相机曝光控制是通过控制曝光时间,增益和光圈来调整展示水平的任务,以达到给定场景的所需亮度和图像质量水平。调整较差的暴露参数导致暴露过度,暴露不足,模糊或嘈杂的图像,这可能会导致基于图像的应用程序中的性能降解,并且在最坏的情况下甚至是威胁生命的事故。因此,找到适当的相机暴露是确保计算机VI- sion应用功能的第一步,例如对象检测[5,16],语义分割[9,17],深度估计[10,26]和视觉传感器[1,13]。相机外观控制中有几个基本要求。必须保证快速收敛以在动态降低的情况下保持适当的暴露水平。此外,曝光控制环是相机系统中最低的循环之一。因此,必须考虑轻巧的算法设计用于车载级操作。最后,不应牺牲融合图像的质量以满足要求。此外,同时控制的参数数的数量也很重要,因为它会影响收敛时间和收敛图像的最终质量。单一控制方法[14,18,20]以一种方式控制暴露参数,以达到所需的暴露水平,而不是控制暴露参数。但是,收敛的参数通常不是最佳的,例如[长时间曝光时间,低增益]和[短曝光时间,高增益]对。结果,该值导致不良图像伪像,例如由于长时间的暴露时间或由于高增益而引起的严重噪声而导致运动模糊。关节曝光参数控制[7,8,8,21,23,24]通常需要在广泛的搜索空间中进行多个搜索步骤,以找到最佳组合。结果,它们会引起闪烁效果和缓慢的收敛速度。此外,由于其优化算法[7,8],图像评估指标[7,8,20,21]和GPU推论,因此需要高级计算复杂性[23]。在本文中,我们提出了一种新的联合暴露参数控制方法,该方法利用了增强学习来实现即时收敛和实时处理。所提出的框架由四个贡献组成:•简化的训练场,以模拟现实世界的di-verse和动态照明变化。•闪烁和图像属性感知奖励设计,以及用于实时处理的轻巧和直观的状态设计。•静态的动态照明课程学习,以提高代理的暴露能力。•域随机技术减轻训练场的限制并在野外实现无缝的一般性,而无需额外的训练。
但是,请注意“情景四”中另一种可能的“市场操纵”。在这种情况下,一小群大卖家可能具有默契勾结的能力。在这种情况下,寡头垄断者将有强烈的动机人为地限制供应并推高价格,如供应曲线 S2 所示。在这种情况下,这种人为的短缺将推动价格上涨至 D3 和 S2 交点处的 P3。这导致在均衡点 4 处出现新的均衡,相对于市场结果的人为短缺等于 Q4 减去 Q2,价格从 P2 上涨到 P3,高于竞争结果,并且收取纯粹归因于人为短缺的额外经济租金,这些租金等于由 P2 和 P3 以及均衡点 4 和 5 形成的矩形面积。
孩子们喜欢在户外玩耍和探索。工作人员考虑到了孩子们的兴趣,户外空间有助于孩子们发挥创造力和解决问题。一位工作人员告诉我们:“孩子们一直是改变户外环境的核心,因为我们鼓励他们参与保护环境”。家长们对孩子们每天都有机会在户外玩耍以及这对他们的孩子的好处表示了积极的看法。一位家长评论说:“无论天气如何,我的孩子都有机会在户外玩耍,我们为他提供了防水服以保持身体干燥,我的孩子喜欢户外区域,他说‘就像在公园一样’”。
我们小组率先在 LHC 的高能物理分析中使用量子机器学习 (QML)。我们已在门模型量子计算机模拟器和硬件上成功将几种 QML 分类算法应用于 ttH(与顶夸克对相关的希格斯粒子生成)和希格斯粒子到两个μ子(希格斯粒子与第二代费米子的耦合)这两项最近的 LHC 旗舰物理分析。模拟研究已使用 IBM Quantum Framework、Google Tensorflow Quantum Framework 和 Amazon Braket Framework 进行,并且我们已实现良好的分类性能,其性能类似于目前在 LHC 物理分析中使用的经典机器学习方法,例如经典 SVM、经典 BDT 和经典深度神经网络。我们还使用 IBM 超导量子计算机硬件进行了研究,其性能令人鼓舞,并且接近 IBM 量子模拟器的性能。此外,我们将研究扩展到其他 QML 领域,例如量子异常检测和量子生成对抗,并已取得一些初步成果。此外,我们还使用 NVIDIA cuQuantum 和 NERSC Perlmutter HPC 克服了大量子比特(25 个量子比特或更多)和大量事件情况下的密集计算资源挑战。
在陆地机器人自主导航的背景下,创建用于代理动力学和感官的现实模型是机器人文献和商业应用中的广泛习惯,在该习惯中,它们用于基于模型的控制和/或用于本地化和映射。另一方面,较新的AI文献是在模拟器或Ai-thor的模拟器或端到端代理上进行训练的,在这种模拟器中,重点放在照相现实渲染和场景多样性上,但是高效率机器人动作具有较少的特权角色。所得的SIM2REAL差距显着影响训练有素的模型转移到真正的机器人平台。在这项工作中,我们探讨了在设置中对代理的端到端培训,从而最大程度地减少了Sim2real Gap,在感应和驱动中。我们的代理直接预测(离散的)速度命令,这些命令是通过真实机器人中的闭环控制维护的。在修改的栖息地模拟器中鉴定并模拟了真实机器人的行为(包括底盘的低级控制器)。探视和定位的噪声模型进一步促进了降低SIM2REAL间隙。我们在实际导航方案上评估,探索不同的本地化和点目标计算方法,并报告与先前的工作相比的性能和鲁棒性的显着增长。
文本对图像模型的当前指标通常依赖于不足以代表人类真正偏好的统计指标。尽管最近的工作试图通过人类注释的图像来学习这些偏好,但它们将人类偏好的丰富挂毯降低到单个总分。然而,当人类评估不同方面的图像时,偏好会有所不同。因此,为了学习多维人类偏好,我们提出了多维偏好评分(MPS),这是评估文本对图像模型的第一个多维偏好评分模型。MPS引入剪辑模型上的偏好条件模块,以学习这些不同的偏好。它是根据我们的多维人类偏好(MHP)数据集进行了训练的,该数据集包括607,541图像的四个维度(即美学,语义一致性,详细信息,详细质量和整体评估)的918,315个人类偏好选择(即,美学,语义一致性,细节质量和整体评估)。这些信息是由各种最新的文本对图像模型生成的。MPS在4个维度上的3个数据集上优于现有的评分方法,从而使其成为评估和改进文本对象的有希望的指标。该模型和数据集将被公开使用,以促进未来的研究。项目页面:https://wangbohan97.github.io/mps/。
标题:标题标明了主题、主题或作者的论点或论据。想想标题。你已经知道了什么?将标题变成一个问题,你可以在阅读时寻找答案。 标题:标题是进入章节或选集每个部分的门户。像标题一样,它们可以变成问题,让你有理由阅读该部分文本。当你根据标题提出问题时,试着将它与标题联系起来。还要注意副标题。它们通常可以提供你从标题中提出的问题的答案。 介绍:章节的介绍可以通过提供重要的背景信息来让你了解某个主题。一定要读它。如果你正在阅读一个部分,请阅读第一段以了解将要讨论的内容。 每个段落的每个第一句话:教科书段落的第一句话通常是段落的主题句或主要思想。因此,通过阅读它们,你将获得大量有关该主题的信息。你还会遇到没有标题的选段,所以段落的第一句话是你进入内容的入口。它们会帮助你预测作者将要讨论的内容。 词汇: 你正在阅读的学科的语言可能是新的和不熟悉的,所以每次阅读时都要准备好增加你的词汇量。如果你提前花点时间看看新单词,这将有助于你在阅读时更顺利地浏览选段。 注意那些单词,它们通常在章节开头、文本中以粗体显示、写在页边空白处或在结尾处进行回顾,并附有定义。突出显示这些单词。大声朗读。阅读它们的定义。 视觉效果: 教科书提供图片或视觉效果来解释和说明所教的内容,因此请务必在阅读文本之前查看它们。阅读说明、标题、描述和关键点。许多人在“看到”一个想法的视觉呈现时能最好地记住和理解。常见的视觉材料包括:照片、绘画、图形、数字、图表、卡通和地图。
