随着当前网络平台用于在线电子商务的快速开发,除了透明的价格竞争外,买方的反馈也对消费者的购买决策也有合理的影响。今天,我们可以看到,近年来,消费者在相关网站上的反馈行为,包括著名的在线购物平台,例如亚马逊购物,Shopee Shopping和Toobao,近年来逐渐得到了增强。消费者反馈的实质性建议是否有助于其他肤浅的消费者阅读他们以改善购物习惯。在这项研究中,我们使用机器学习自动对反馈注释进行分类,并监视购物交易量的增长趋势,从而选择Shopee购物平台作为实验案例。根据评论提供的客户提供的建议已融入情感单词管理分析中,并且单词和单词分数得到了加权。最后,建造了商店销售引擎,该引擎模拟消费者的行为,使用审核管理过滤可变因素,并优化了预测消费者购物的指标。
这项研究深入研究了健康保险交叉销售,其中将其他保险产品促进了现有保单持有人,建议对拥有基本健康保险的人进行补充保险,例如牙科或人寿保险。这项研究的重点是应用机器学习来预测南非客户之间的交叉销售机会。目的是开发一种预测模型,以帮助健康保险公司确定潜在的交叉销售客户。利用定量研究方法,使用各种机器学习算法(包括随机森林,k-nearest邻居,Xgboost分类器和python中的逻辑回归)分析了健康保险消费者信息的全面数据集。结果表明,逻辑回归是表现最佳的模型,当在1,000,000个健康保险客户的数据集中接受17个功能,包括健康保险客户信息,因此获得了0.83的准确得分,F1得分为0.91。发现的分析表明,以前的保险和更长的服务历史的客户更有可能购买其他健康保险产品。这些见解使健康保险公司通过改善客户的目标和保留策略来增强收入,从而为行业对有效的交叉销售方法的理解提供了宝贵的信息。该方法包括定量数据提取和机器学习应用,因此有助于交叉销售策略理解的进步。
随着学年的结束,危机显然还会持续,我们需要以不同的方式思考 2020-2021 学年。经过深思熟虑的规划,克利夫兰艺术与社会科学学院为家庭提供了三种学习选项,无论学生的年级如何,这些选项都在开学第一天实施。这三个选项让家庭能够考虑学生的健康状况、他们对社区当前 COVID-19 状况的适应程度、他们在家促进学习的能力或兴趣以及许多其他重要因素。家庭被要求在开学前做出选择,并继续采用这种方式直到第一学期结束。我们的学校领导团队可以随时满足家庭更改选项的请求。如果学校的健康状况发生变化,或州长颁布了关闭命令,所有学生都可以立即转向选项 3。
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。
商标法保护标记,以使公司能够向消费者发出产品的质量。为了获得保护,商标必须能够识别和区分货物。美国法院通常会在“独特性”(称为Abercrombie Spectrum)上找到标记,该标记将标记归类为幻想,任意或暗示性,因此将标记归类为“固有的独特性”,或者是描述性或通用性的,因此并非固有的。本文探讨了是否可以使用当前的自然语言处理技术在Abercrombie频谱上找到商标。在2012年至2019年之间使用约150万个美国商标注册以及220万相关的USPTO办公室操作,该论文提出了一种机器学习模型,该模型了解商标应用程序的语义特征,并预测商标是否本质上是独特的。我们的模型总体上可以预测具有86%精度的商标行动,并且可以确定商标应用程序的子集,在该子集对其独特性的预测中高度确定。我们进一步分析商标应用程序中的哪些功能推动了模型的预测。然后,我们探索方法的实际和规范性含义。在实际层面上,我们概述了一个决策支持系统,该系统可以作为“机器人商标书记员”,协助商标专家确定商标的独特性。这样的系统还可以帮助商标专家了解商标申请的哪些功能对商标的独特性有最大的作用。在理论上,我们讨论了Abercrombie频谱的规范限制,并建议超越Abercrombie,以换取其独特性不确定的商标。我们讨论了法律中的机器学习项目,不仅如何告知我们将来可能自动化的法律制度的各个方面,而且迫使我们解决可能是看不见的规范权衡。
本摘要概述了机器学习模型在网络安全领域的有效性,并强调了可解释的AI在授权安全分析师中的重要性。随着网络威胁的复杂性和复杂性的日益增长,组织正在转向高级技术,例如机器学习,以增强其防御机制。但是,传统机器学习算法的黑盒性质阻碍了其在安全操作中的采用。本文通过为机器学习模型的决策过程提供可解释的见解,探讨了可解释的AI及其潜力解决此限制的概念。通过提高透明度和问责制,可以解释的AI为安全分析师提供必要的工具,以更好地理解,验证和信任这些模型的输出。通过研究当前的研究和行业实践,这项研究强调了可解释的AI在促进人类与机器学习算法之间有效合作的重要性,最终增强了网络安全工作。
