随着学年的结束,危机显然还会持续,我们需要以不同的方式思考 2020-2021 学年。经过深思熟虑的规划,克利夫兰艺术与社会科学学院为家庭提供了三种学习选项,无论学生的年级如何,这些选项都在开学第一天实施。这三个选项让家庭能够考虑学生的健康状况、他们对社区当前 COVID-19 状况的适应程度、他们在家促进学习的能力或兴趣以及许多其他重要因素。家庭被要求在开学前做出选择,并继续采用这种方式直到第一学期结束。我们的学校领导团队可以随时满足家庭更改选项的请求。如果学校的健康状况发生变化,或州长颁布了关闭命令,所有学生都可以立即转向选项 3。
如何开发精简而准确的深度神经网络对于实际应用至关重要,尤其是对于嵌入式系统中的应用。尽管之前沿着该研究方向的工作已经显示出一些有希望的结果,但是大多数现有方法要么无法显著压缩训练有素的深度网络,要么需要对修剪后的深度网络进行大量再训练才能重新提高其预测性能。在本文中,我们提出了一种新的深度神经网络分层修剪方法。在我们提出的方法中,每个单独层的参数都基于相应参数的分层误差函数的二阶导数独立地进行修剪。我们证明,修剪后最终的预测性能下降受每层造成的重构误差的线性组合限制。通过适当控制分层误差,只需对修剪后的网络进行轻度再训练即可恢复其原始的预测性能。我们在基准数据集上进行了大量实验,以证明我们的修剪方法与几种最先进的基线方法相比的有效性。我们的工作代码发布在:https://github.com/csyhhu/L-OBS 。
我们提出了一种类别级 6D 物体姿势和大小估计的新方法。为了解决类内形状变化,我们学习了规范形状空间 (CASS),它是特定物体类别的大量实例的统一表示。具体而言,CASS 被建模为具有规范化姿势的规范 3D 形状的深度生成模型的潜在空间。我们训练变分自动编码器 (VAE) 以从 RGBD 图像在规范空间中生成 3D 点云。VAE 以跨类别的方式进行训练,利用公开可用的大型 3D 形状存储库。由于 3D 点云是以规范化姿势(具有实际大小)生成的,因此 VAE 的编码器学习视图分解的 RGBD 嵌入。它将任意视图中的 RGBD 图像映射到与姿势无关的 3D 形状表示。然后,通过将物体姿势与使用单独的深度神经网络提取的输入 RGBD 的姿势相关特征进行对比来估计物体姿势。我们将 CASS 的学习和姿势和尺寸估计集成到端到端可训练网络中,实现了最先进的性能。
我们开发了一个用于构建可变形模板的学习框架,该模板在许多图像分析和计算解剖学任务中起着基础性作用。用于模板创建和图像与模板对齐的传统方法经历了数十年的丰富技术发展。在这些框架中,模板是使用模板估计和对齐的迭代过程构建的,这通常在计算上非常昂贵。部分由于这一缺点,大多数方法为整个图像群体计算单个模板,或为数据的特定子组计算几个模板。在这项工作中,我们提出了一个概率模型和有效的学习策略,该模型和有效的学习策略可以产生通用或条件模板,并与一个神经网络联合使用,该神经网络可以有效地将图像与这些模板对齐。我们展示了该方法在各种领域的实用性,特别关注神经成像。这对于不存在预先存在的模板的临床应用特别有用,或者使用传统方法创建新模板的成本可能过高。我们的代码和地图集可作为 VoxelMorph 库的一部分在线获取,网址为 http://voxelmorph.csail.mit.edu 。
近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
学习项目以您孩子所处关键阶段的国家课程要求为基础。您的孩子可能会觉得学习项目中为他们的年级设置的任务过于简单。如果是这种情况,我们建议您的孩子访问为上述关键阶段设置的学习项目。同样,如果项目太具挑战性,我们建议您的孩子访问下面关键阶段的项目。如果您的孩子需要更多挑战,或者您认为他们的学习存在一些差距,那么 Century Tech 是一个非常棒的资源,目前可免费用于家庭学习。该应用程序旨在解决差距和误解,提供挑战并使孩子能够保留新知识。它使用人工智能来根据您孩子的需求定制学习。在此注册。
神经网络使最先进的方法能够在目标检测等计算机视觉任务上取得令人难以置信的效果。然而,这种成功很大程度上依赖于昂贵的计算资源,这阻碍了拥有廉价设备的人们欣赏先进的技术。在本文中,我们提出了跨阶段部分网络(CSPNet)来从网络架构的角度缓解以前的工作需要大量推理计算的问题。我们将问题归因于网络优化中的重复梯度信息。所提出的网络通过整合网络阶段开始和结束的特征图来尊重梯度的变化,在我们的实验中,在 ImageNet 数据集上以相同甚至更高的精度将计算量减少了 20%,并且在 MS COCO 目标检测数据集上的 AP 50 方面明显优于最先进的方法。 CSP-Net 易于实现且足够通用,可以应对基于 ResNet、ResNeXt 和 DenseNet 的架构。
该教学大纲旨在为参与者提供对人工智能(AI)和机器学习(ML)概念的全面理解,涵盖了理论基础和实际应用。参与者将获得流行的AI/ML库和框架的动手经验,从而使他们能够为各种现实世界中的问题构建和部署AI和ML解决方案。