I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
学习项目以您孩子所处关键阶段的国家课程要求为基础。您的孩子可能会觉得学习项目中为他们的年级设置的任务过于简单。如果是这种情况,我们建议您的孩子访问为上述关键阶段设置的学习项目。同样,如果项目太具挑战性,我们建议您的孩子访问下面关键阶段的项目。如果您的孩子需要更多挑战,或者您认为他们的学习存在一些差距,那么 Century Tech 是一个非常棒的资源,目前可免费用于家庭学习。该应用程序旨在解决差距和误解,提供挑战并使孩子能够保留新知识。它使用人工智能来根据您孩子的需求定制学习。在此注册。
cc0pi信号定义(中微子模式):一种负电荷的muON,零亲和在最终状态下检测到的任何数量的哈德子,其中在FGD1(scintillator)中重建了顶点(scIntillator)fimial formial量
4 md.devendran@gmail.com 摘要:心脏病仍然是全球死亡的主要原因之一。早期预测和诊断对于预防严重后果和改善患者的生活质量至关重要。该项目专注于使用机器学习技术开发强大的心脏病预测系统。通过分析由各种患者属性(例如年龄、性别、血压、胆固醇水平和其他医疗参数)组成的综合数据集,该系统旨在预测患者患心脏病的可能性。该项目采用各种机器学习算法,如逻辑回归、决策树、支持向量机 (SVM) 和随机森林来对数据进行分类并提供准确的预测。使用准确度、精确度、召回率和 F1 分数等指标来评估系统的性能,确保它能够在实际应用中提供可靠的结果。此外,还应用特征选择技术来识别导致心脏病的最重要因素,从而提高模型的可解释性。提出的解决方案旨在通过提供早期警报和建议来帮助医疗保健专业人员,最终促进及时干预。该项目促进了人工智能在医疗保健领域日益重要的作用,并展示了机器学习在增强心脏病预防诊断能力方面的潜力。
摘要:焦虑症 (AD) 是一种主要的精神疾病。然而,由于 AD 的症状和混杂因素很多,很难诊断,患者长期得不到治疗。因此,研究人员对非侵入性生物信号的兴趣日益浓厚,例如脑电图 (EEG)、心电图 (ECG)、皮肤电反应 (EDA) 和呼吸 (RSP)。将机器学习应用于这些信号使临床医生能够识别焦虑模式并区分病人和健康人。此外,已经开发了具有多种不同生物信号的模型,以提高准确性和便利性。本文回顾并总结了 2012 年至 2022 年发表的将不同的机器学习算法应用于各种生物信号的研究。在此过程中,它提供了当前发展优缺点的观点,以指导未来焦虑检测的进步。具体而言,这篇文献综述表明,对于样本量为 10 至 102 名参与者的研究,测量准确度在 55% 至 98% 之间,非常有希望。平均而言,仅使用 EEG 的研究似乎获得了最佳性能,但使用 EDA、RSP 和心率可获得最准确的结果。随机森林和支持向量机被发现是广泛使用的机器学习方法,只要进行了特征选择,它们就会产生良好的结果。神经网络也被广泛使用,并提供良好的准确性,其优点是不需要进行特征选择。这篇综述还评论了模态的有效组合以及检测焦虑的不同模型的成功。
随着数字经济中数据收集和使用的激增,国民经济账户编制者和用户对数据存量和流量的理解和统计处理引起了关注。在本文中,我们通过总结职业中隐含的数据相关活动的生产成本来衡量美国商业部门自有数据存量和流量的价值。我们的方法通过使用机器学习模型和在线招聘广告文本代理职业级别的时间使用因素,增强了传统的成本总和方法,用于衡量国民经济账户中其他自有知识产权产品(Blackburn 2021)。在我们的实验估计中,我们发现美国商业部门对自有数据资产的年度现值投资从 2002 年的 840 亿美元增长到 2021 年的 1860 亿美元,年均增长率为 4.2%。2002-2021 年期间的累计现值投资为 2.6 万亿美元。除了年度现价投资外,我们还提供历史成本净存量、实际增长率以及对工业部门增加值的影响。
● 也称为“传递函数” - 计算加权和,并决定是否“激发”神经元。 ● 最常见的例子 - 阶跃函数。 ● 非线性激活函数有助于解决复杂问题
在本文件中,我们提出了一套原则,以确保更新资金得到最佳利用并为新建筑提供指导。学术空间管理部门和大学建筑师办公室的代表表示,他们欢迎一套原则来指导未来的项目。这里提出的原则是在与全国各地的同事进行磋商和对学习空间文献的了解的基础上提出的,并且是基于我们对其他北美机构类似努力的研究。在最终达成一致意见后,我们将起草流程和指南,这些流程和指南将以这些原则为指导,并用于指导未来的学习空间项目。
运用数学游戏应用进行数字化游戏化学习对四年级学生计算能力的影响 刘濝濢 -Bei LIU a* , Alex Wing Cheung TSE b* 香港大学教育学院,香港 a* u3598295@connect.hku.hk; b* awctse@hku.hk 摘要:计算能力是小学数学学习中必不可少的素质,事实证明,通过游戏化应用进行学习可以提高学生的数学学习成绩,从而有利于发展他们的计算能力。计算能力是数学核心技能之一,可以通过不断的计算练习来提高。然而,目前关于在小学使用运用数学游戏应用进行数字化游戏化学习 (DGBL) 对发展学生计算能力的影响的研究还很少。因此,本项准实验研究共有78名学生参与,旨在评估通过iPad进行DGBL与数学游戏应用“口算英雄”对中国大陆一所主流学校四年级学生计算能力的可能影响。实验班将数学游戏应用融入为期四周的课堂活动中,实验组和对照组均采用标准化计算能力测试:Abilita diCalcoloz计算能力-记忆与训练第6-11组(Cornoldi等,2002)进行前测和后测。采用方差分析的数据分析结果显示,在数学课堂上使用iPad上的数学游戏应用学习时,学生的计算能力存在显著差异,四年级实验组(n=40)与对照组(n=38)的整体计算能力存在显著差异。换句话说,我们发现,在使用数学游戏应用进行计算练习后,学生更有可能获得更好的计算能力,尤其体现在计算速度更快、错误率更低方面。然而,在数值知识方面没有显著差异,使用这种数学游戏应用程序学习可能不会导致获得更多的数学知识。这项研究为小学数学教育者和教师提供了一个现实的视角来了解使用数学游戏应用程序学习的潜力:它可以成为提高四年级学生计算能力的有效工具。该项目的第二阶段是探索研究结果背后的原因,揭示使用数学游戏应用程序进行 DGBL 的可能因素,这些因素可能会促进计算能力的某些方面。提出了将 DGBL 融入小学数学课堂的进一步建议。关键词:基于数字游戏的学习、计算能力、数学游戏 1。引言:学生的计算能力是指理解数字之间规律和相对量,并以更灵活的方式进行数字运算(加、减、乘、除)的能力(Feigenson 等,2004;Tall 和 Dehaene,1998)。计算能力对于小学阶段的数学成绩至关重要(Cowan 等,2011)。与不同领先国家的小学数学课程类似,根据中国大陆最新的课程标准,四年级学生必须掌握四种运算(加、减、乘、除),并且需要不断练习计算能力以找到更简单的解决方案(中华人民共和国教育部,2022)。学生的表现和