遗传性视网膜病变是一种毁灭性疾病,在大多数情况下缺乏治疗选择。由于此类疾病中发现的突变种类繁多,因此无论潜在的遗传病变如何,减轻病理生理的疾病修饰疗法都是可取的。我们测试了一种基于系统药理学的策略,该策略通过 G 蛋白偶联受体 (GPCR) 调节抑制细胞内 cAMP 和 Ca2+ 活性,使用坦索罗辛、美托洛尔和溴隐亭共同给药。该治疗改善了 Pde6 β rd10 和 RhoP23H/WT 视网膜色素变性小鼠的视锥光感受器功能并减缓了退化。在 PDE6A-/- 狗中,经过 7 个月的药物输注后,视锥变性得到适度缓解。该治疗还改善了 Leber 先天性黑蒙 Rpe65-/- 小鼠模型中的视杆通路功能,但不能防止视锥变性。 RNA 测序分析表明,接受药物治疗的 Rpe65-/- 和 rd10 小鼠的代谢功能得到改善。我们的数据表明,通过多种受体作用改变第二信使水平的儿茶酚胺能 GPCR 药物组合可提供一种潜在的改善视网膜变性的疾病疗法。
遗传性视网膜疾病 (IRD) 是一组异质性罕见眼病,通常由单基因突变引起,被认为是基因治疗的热门靶点。在 RPE65 突变导致的莱伯氏先天性黑蒙的 IRD 基因替代疗法获批后,国际上展开了密集的研究,以确定一系列 IRD 的最佳基因治疗方法,目前许多方法正在进行临床试验。在本综述中,我们探讨了 IRD 带来的治疗挑战,并回顾了可能适用于不同 IRD 突变子集的当前和未来方法。重点放在五种不同的基因治疗方法上,这些方法有可能治疗全谱 IRD:1)使用腺相关病毒(AAV)和非病毒递送载体进行基因替换,2)通过 CRISPR/Cas9 系统进行基因组编辑,3)通过内源性和外源性 ADAR 进行 RNA 编辑,4)使用反义寡核苷酸进行 mRNA 靶向以进行基因敲除和剪接修饰,以及 5)光遗传学方法,旨在通过设计其他视网膜细胞类型使其具有光转导能力来取代天然视网膜光感受器的功能。
双重变异在芳基烃受体相互作用的蛋白质样1(AIPL1)基因导致leber先天性膜性肌动症亚型4(LCA4),一种常染色体隐性膜性早期性早期性衰弱性疾病,导致近距离寿命的快速发光症状,并在近代的野生型中产生了近代的寿命。Currently, there is no treat- ment or cure for AIPL1 -associated LCA4.在这项研究中,我们研究了腺相关病毒介导的AIPL1基因替代疗法的潜力,该疗法在LCA4的两个先前验证的人视网膜器官(RO)模型中。我们在这里报告说,光感受器特异性AIPL1基因置换疗法目前正在以人类的第一个应用中进行测试,在这些模型中有效地挽救了AIPL1-ASSOCI-ENDED LCA4的分子特征。值得注意的是,挽救视网膜磷酸酯酶6的损失,并在治疗后降低了环状鸟嘌呤一磷酸(CGMP)水平升高。对未处理和AAV传输的ROS的转录组分析揭示了对CGMP水平升高和病毒感染的响应的转录组变化。Overall, this study supports AIPL1 gene therapy as a promising ther- apeutic intervention for LCA4.
脊椎动物视觉系统的光感受器的发展受复杂的转录调节网络控制。otx2在有丝分裂视网膜祖细胞(RPC)中表达,并控制感光体发生。由OTX2激活的CRX在细胞周期出口后在感光前体中表达。neurod1也存在于可以指定为杆和锥形光感受器亚型中的光感受器前体中。NRL,并调节包括孤儿核受体NR2E3在内的下游杆特异性基因,该基因进一步激活了杆特异性基因并同时抑制了锥体特异性基因。锥形亚型规范也受到诸如THRB和RXRG等几个转录因子的相互作用的调节。这些关键转录因子中的突变是出生时眼部缺陷的原因,例如微感染和遗传感受器疾病,例如Leber先天性症状(LCA),色素性视网膜炎(RP)和盟友性疾病。特别是,许多突变是以常染色体主导方式遗传的,包括CRX和NRL中的大多数错义突变。在这篇综述中,我们描述了与上述转录因子中突变相关的光感受器缺陷的光谱,并总结了当前对致病突变下的分子机制的知识。终于,我们考虑了理解基因型 - 表型相关性和轮廓途径的杰出差距,以实现对治疗策略的未来研究。
摘要简介:反义寡核苷酸(ASO)代表一类药物,可以合理设计,以补充靶RNA转录物的编码或非编码区域。他们可以调节预选前的RNA剪接,诱导mRNA敲低或阻止引起疾病的基因的翻译,从而减慢疾病的进展。玻璃体内递送的药代动力学可以使ASO有效治疗遗传性视网膜疾病。涵盖的区域:我们回顾了遗传性视网膜疾病的ASO疗法的临床试验现状,这些试验表现出了安全性,可行的耐用性和早期功效。未来的应用将在替代遗传方法的背景下进行讨论,包括增强基因和基因编辑。专家意见:早期疗效数据表明,剪接修饰ASO,Sepofarsen是与COMMAN COMC.2991+1655a> G突变相关的Leber先天性amurisos的一种有前途的治疗方法。然而,需要评估对复合杂合子的患者中对ASO介导的剪接缺陷校正的临床反应的潜在变异性。ASO对许多其他遗传性视网膜疾病具有巨大的治疗潜力,并具有常见的深层和优势功能增益突变。这些会补充病毒载体介导的基因增强,通常受转基因的大小和隐性疾病治疗的限制。
摘要:芳烃受体相互作用蛋白样 1 (AIPL1) 在光感受器中表达,它促进磷酸二酯酶 6 (PDE6) 的组装,后者在光传导级联中水解 cGMP。AIPL1 的遗传变异会导致 4 型莱伯先天性黑蒙 (LCA4),表现为儿童早期视力迅速丧失。可用的体外 LCA4 模型有限,这些模型依赖于携带患者特异性 AIPL1 突变的患者来源细胞。虽然很有价值,但单个患者来源的 LCA4 模型的使用和可扩展性可能受到道德考虑、患者样本获取和高昂成本的限制。为了模拟患者独立的 AIPL1 突变的功能后果,实施了 CRISPR/Cas9 来产生携带 AIPL1 第一外显子移码突变的同源诱导多能干细胞系。使用这些细胞生成视网膜类器官,这些细胞保留了 AIPL1 基因转录,但无法检测到 AIPL1 蛋白。AIPL1 敲除导致视杆光感受器特异性 PDE6 α 和 β 减少,cGMP 水平升高,表明光传导级联下游失调。本文描述的视网膜模型提供了一个新平台,用于评估 AIPL1 沉默的功能后果,并通过针对突变独立发病机制的潜在治疗方法测量分子特征的挽救。
引言 水文等水文应用需要配准和处理多传感器和多源数据,例如机载雷达、专题制图仪 (TM)、数字高程模型 (OEM) 和数字地形数据(道路、河流网络等)。尽管校正 TM 数据的问题相对较少,但机载雷达图像的情况更为复杂,因为视图几何形状和由此产生的图像扰动在场景中变化更快。不同的研究人员针对雷达情况测试了各种二维图像变换(Trevett,1984 年)。在大型场景中,这些变换受到根本限制,因为它们无法应对由地形引起的局部扭曲。引用的结果介于 5 到 100 米之间,取决于区域大小、地形和所用的二维变换类型。此外,立体雷达图像能够生成数字高程模型 (OEM) 和数字雷达地图 (Leber!等,1986)。摄影产品由数字图像创建,并用于使用雷达测绘方法的摄影测量立体绘图仪器。基于 16 个检查点,随机水平差异值在两个方向上均为 30 米(例如,使用的 SAR 图像的约 4 个像素)。通常,可以使用 OEM 和立体模型测量中的辅助数据生成正射影像 (Mercer,1986)。本文描述的方法是全数字化的,包括 SAR 图像、处理和正射影像生成。本研究开发的模型采用摄影测量方法,采用基于彩色图像的光束法平差技术
亚历山德罗·卡戈尔(Alessandro Cagol),医学博士,帕斯卡·本克特(Pascal Benkert) MD的Ernst-Wilhelm Radue,MD,Johanna Oechtering,MD,Johannes Lorscheider,MD,Marcus d'Souza,MD ,医学博士,博士,医学博士Oliver Findling,医学博士Andrew Chan,Anke Salmen,MD,Caroline Pot,MD,PhD,Claire Bridel,MD,Chiara Zecca,MD,MD, Tobias Derfuss 医学博士、Johanna M. Lieb 医学博士、Luca Remonda 医学博士、Franca Wagner 医学博士、Maria Isabel Vargas 医学博士、Renaud A. Du Pasquier 医学博士、Patrice H. Lalive 医学博士、Emanuele Pravat`a 医学博士、Johannes Weber 医学博士、Philippe C. Cattin 博士、Martina Absinta 医学博士、博士、Claudio Gobbi 医学博士、David Leppert 医学博士、Ludwig Kappos 医学博士、Jens Kuhle 医学博士、博士以及 Cristina Granziera 医学博士、博士
2023年的出版物讨论了AAV2可能参与患有困难的儿童急性肝炎的发展。动员潜在 - 但是,AAV2基因组总是用一个或多个助手感染肝细胞(例如B. Mastadenovirus属)。存在一种病理免疫反应,其中B和T细胞积聚在肝脏中[29,30]。也有迹象表明,II类人类白细胞抗原(HLA型)的某些组成有利于免疫病理学的表达,因为在93%的上述患者中进行了一项研究。可以证明肝炎Allel HLA-DRB1*04:01,仅在16%的正常人群中可用[31]。因此,不能预料AAV2是严重急性肝炎的发展,因为AAV2基因组,但可以证明肝活检中没有病毒蛋白,并且可以证明血液中受影响的患者[30]。
最初:只要发生改善,在替代天的1,000微克。维护:每两个月1,000微克。预防与维生素B 12相关的大细胞性贫血与胃切除术,一些吸收不良综合征和严格的素食主义有关。每两个或三个月1,000微克。 烟草amblyopia和Leber的视神经萎缩。 最初:每天通过肌肉注射每天1,000微克或以上,每天两周,然后每周两倍,只要发生改善即可。 维护:每月1,000微克。 4.3对活性物质或第6.1节中列出的任何赋形剂的禁忌症过敏。 对钴的已知敏感性。 VITA-B12注射不应用于治疗怀孕中的巨核细胞贫血(请参阅4.4特殊警告和使用预防措施; 4.6生育能力,怀孕和哺乳)。 4.4使用的特殊警告和预防措施不要静脉内使用。 在服用维生素B 12之前,应从患者那里获得敏感性史。 在对可能对钴胺敏感敏感的患者施用维生素B 12之前,建议先进行皮内测试剂量。 低钾血症和心脏骤停是在深入治疗大型细胞贫血时的报道。 血清钾应在有害贫血的初始治疗期间仔细监测。 羟堡剂仅应在正确诊断的缺乏症情况下使用。 上面给出的剂量方案通常令人满意,但建议对血液进行定期检查。每两个或三个月1,000微克。烟草amblyopia和Leber的视神经萎缩。最初:每天通过肌肉注射每天1,000微克或以上,每天两周,然后每周两倍,只要发生改善即可。维护:每月1,000微克。4.3对活性物质或第6.1节中列出的任何赋形剂的禁忌症过敏。对钴的已知敏感性。VITA-B12注射不应用于治疗怀孕中的巨核细胞贫血(请参阅4.4特殊警告和使用预防措施; 4.6生育能力,怀孕和哺乳)。4.4使用的特殊警告和预防措施不要静脉内使用。在服用维生素B 12之前,应从患者那里获得敏感性史。在对可能对钴胺敏感敏感的患者施用维生素B 12之前,建议先进行皮内测试剂量。低钾血症和心脏骤停是在深入治疗大型细胞贫血时的报道。血清钾应在有害贫血的初始治疗期间仔细监测。羟堡剂仅应在正确诊断的缺乏症情况下使用。上面给出的剂量方案通常令人满意,但建议对血液进行定期检查。在完全确定诊断之前,请勿使用羟obal蛋白,因为它可能掩盖了脊髓的亚急性变性的症状,也可以掩盖恶性贫血的真实诊断。叶酸可能会增强维生素B 12缺乏症的神经系统并发症,因此不应对患有恶性贫血的患者施用(请参阅4.5与其他药物和其他形式的相互作用相互作用)。由于可能有反应性血小板病的可能性,应在高核细胞贫血治疗的头几周内监测血小板计数。长期肠胃外给药可以增加肾功能不全和早产儿患者铝毒性的风险。如果巨核细胞贫血对Vita-B12注射作出反应,则应研究叶酸代谢。每天超过10微克的剂量可能