5参见,例如,Linke S,Lehner B,Ouellet Dallaire C,Ariwi J,Grill G,Anand M,Beames P,Burchard-Levine V,Maxwell S,Moidu H,Tan F和Thieme M.2019。全球水力环境亚基蛋白和河流覆盖特性高空间分辨率。科学数据。6:283。可用:https:// doi.org/10.1038/s41597-019-0300-6;和Lehner B,Messager ML,Korver MC,Linke S. 2022。高空间分辨率的全球水力环境湖泊特征。科学数据。9:351。可用:https://doi.org/10.1038/s41597-022-01425-z。
∗ 本章受益于众多人士的反馈和讨论,包括 Rediet Abebe、Daron Acemoglu、David Autor、Carlos Gonzalez Perez、Lukas Lehner、Sanaz Mobasseri 以及牛津机器学习和经济学阅读小组和 MD4SG 不平等小组的参与者。
⇤本章从包括Rediet Abebe,Daron Acemoglu,David Autor,Carlos Gonzalez Perez,Lukas Lehner,Sanaz Mobasseri以及牛津机器机器学习和经济学阅读小组和MD4SG的牛津大学的参与者以及MD4SG的参与者中,与许多人的反馈和讨论有关。
[1] Kiemel, S.、Smolinka, T.、Lehner, F.、Full, J.、Sauer, A.、Miehe, R.:以德国能源转型为例的水电解槽关键材料,Int J Energy Res. 2021;45:9914–9935。DOI:10.1002/er.6487。
•审查论文的介绍。克里斯·马林斯(Chris Malins)(cerulogy)•小组讨论•汉堡大学(Aarhus University)Hamed Sanei•瑞典农业科学大学塞西莉亚·桑德伯格(Cecilia Sundberg)•问答11:05 - 休息11:15 - 与通过审查论文的生物炭证明永久性碳的认证有关的其他问题。克里斯·马林斯(Chris Malins)(cerulogy)•专家小组成员的反应•马丁·鸽子(Fern)•阿马利·托克斯达尔(Amalie Tokkesdal)和朱莉·玛丽(Julie Marie)迪尔森(丹麦气候,能源和公用事业部)•安娜·莱纳(Anna Lehner)(carbonfuture)12:25 - 闭幕词。DG Clima
Majed Modaresi 1,†,+,‡,Ryosuke Sugiyama 2,3,4,†,Nhan Dai Thien Tram 2,†,Roman P. Jakob 1,Chin-Soon Phan 2,Chin-soon-phan 2,§§ 1,Preston Shi Yang Long 2,Phillipe A Lehner 1,Zhen Heng Lim 2,Morris Degen 1,Ziwei Yao 2,Timm Maier 1,Timm Maier 1,Yuxin Hou 2,Jia Ying Lee 2,Jian Xu 2,Jian Xu 2,Jian Xu 2,Andrew Yeo Jung Yeat 2,Andrew Yeo Jung Yeat 2,Kenny Ting Sween Koh 2,Kenny Ting Koh 2,Wei Yi Yag Youg Yang Yang 2,Share ling Y. Chua 5,Mami Yamazaki 3,4,Pui Lai Rachel EE 2,*,Sebastian Hiller 1*和Brandon I Morinaka 2,*
最新一代的耦合海洋大气全球气候模型投射了每1°C的每年平均降水量增加1%–3%的全球增长(Douville等,2021)。这种增加取决于对全球平均表面空气温度(每1°C的2%–3%)的强大反应,该反应部分被温室气体和气溶胶对大气辐射加热的快速调整所抵消(Allan等,2020;Fläschner等,2016)。在许多地区都观察到了更激烈但较少的降水事件(Donat等,2019; Giorgi等,2011),并预测了极端降水事件的发生率增加,再加上更长的干燥咒语(Sillmann等,2013; Thackeray等,2013; Thackeray等,2018)。然而,区域降水的投影仍然高度不确定,它们的总方差仍由模型不确定性而不是发射场景或内部气候变异性主导(Douville等,2021; Lehner等,2020)。
联盟成员 Anna Strobl(原姓 Skowron 前世界未来理事会)、Lotta Pirttimaa(欧洲海洋能源)、Steven Vanholme(EKOenergy)、Andrzej Ceglarz(可再生能源电网倡议)、Lena Dente(世界未来理事会)、Namiz Musafer(IDEA Kandy)、Julie Ducasse(加拿大)、 Hans-Josef Fell 和 Thure Traber(均为 EnergyWatch Group)、Rehsmi Ladwa (GWEC)、Benjamin Lehner (DMEC)、Karim Megherbi (Dii Desert Energy)、Marta Martinez (Iberdrola)、Bharadwaj Kummamuru (世界生物能源协会)、Gavin Allwright (IWSA)。 Oliphant (ISES) [现代表 WWEA];以及 IRENA 同事 Ilina Radoslavova Stefanova、Jarred McCarthy、Giedre Viskantaite、Asami Miketa、Bilal Hussain、Juan Pablo Jimenez Navarro、Juan Jose Garcia Mendez、Michael Taylor 和 Anindya Bhagirath(IRENA 知识、政策和金融中心前主任)。 Ute Collier(IRENA 知识、政策和金融中心代理主任)。
极地地区,尤其是北极地区,处于气候危机的前线。近几十年来,北极的表面变暖速率比全球平均值(Rantanen等,2022)高两到四倍,这是一种称为北极扩增的现象(例如Graversen等,2008; Serreze&Barry; Serreze&Barry,2011; Serreze&Francis&Francis&Francis&Francis,2006)。随着温度升高而在北极海冰的厚度和范围内发生了约50%的损失(Gascard等,2019)。未来几十年的北极海冰损失率仍然高度不确定(Bonan,Lehner,&Holland,2021; Bonan,Schneider等,2021),但是后果预计将是严重的:对于本地生态系统而言(Kovacs等,2011; Post等,2013; Post et al。,2013; Tynan,2015; Tynan,2015; Tynan,2015);对于土著人民(Meier等,2014);而且,对于低纬度气候,可能(Cohen等,2014,2020; Jung等,2015; Liu等,2022)。海冰与大气之间的热交是北极扩增的主要驱动力(例如,Lesins等,2012; Previdi等,2021; Serreze等,2009),并确定海冰融化速率(例如Rothrock等人,Rothrock等,1999; Screen&Screen&Screen&Screen Mondss,2010)。
注:本地图不影响任何领土的地位或主权、国际边界和边界的划定以及任何领土、城市或地区的名称。假设:电解器资本支出 = 232-341 美元/千瓦(陆上风能和太阳能光伏);太阳能光伏资本支出 = 325 美元/千瓦;陆上风能资本支出 = 1 200 美元/千瓦;电解器 LHV 效率 = 74%;电解器运营支出 = 资本支出的 3%;系统寿命 = 33 年;折现率 = 6%。行政区域(边界)基于:GADM,版本 1.0,https://www.diva-gis.org/gdata。天气数据集:风数据:哥白尼气候变化服务 (2020),1970 年至今的单层 ERA5 每小时数据,https://doi.org/10.24381/cds.adbb2d47,欧洲中期天气预报中心。太阳能光伏:renewables.ninja,www.renewables.ninja。禁区基于:ESA 和 UCL (2011),GLOBCOVER 2009:产品描述和验证;USGS (1996),全球 30 弧秒海拔 (GTOPO30);全球湖泊和湿地数据库 (GLWD):Lehner 和 Döll (2004),“全球湖泊、水库和湿地数据库的开发和验证”,水文学杂志,第 296 卷,第 1-4 期,2004 年 8 月 20 日,第 1-22 页;粮农组织-联合国教科文组织(2007 年),《世界数字土壤图》;WDPA(2020 年),2020 年 12 月。