我们已经审查了您的第510(k)节上述设备的意图上的第510(k)节,并确定该设备在1976年5月28日,在跨国商业的法律销售的谓语中,在1976年5月28日,与医疗设备的纳入日期相关的是,该设备在法律上销售的谓词在法律上销售的谓词,该设备在法律上销售的谓词是相等的,该谓语是在医疗设备上或已纳入了医疗设备的范围。不需要批准前市场批准申请(PMA)的化妆品法案(法案)。因此,您可能会销售该设备,但要遵守该法案的一般控制条款。尽管这封信将您的产品称为设备,但请注意,一些清除的产品可能是组合产品。位于https://www.accessdata.fda.gov/scripts/cdrh/cdrh/cfdocs/cfpmn/pmn.cfm上的510(k)上市通知数据库。该法案的一般控制条款包括年度注册,设备上市,良好的制造实践,标签和禁止品牌和掺假的禁令。请注意:CDRH不评估与合同责任保证有关的信息。我们提醒您,设备标签必须是真实的,不要误导。
摘要 知识密集型任务对机器学习 (ML) 技术提出了重大挑战。常用的方法,例如大型语言模型 (LLM),在应用于此类任务时往往会表现出局限性。尽管如此,人们已经做出了显著的努力来缓解这些挑战,重点是通过知识图谱 (KG) 来增强 LLM。虽然 KG 在表示知识方面具有许多优势,但它们的开发成本可能会阻碍广泛的研究和应用。为了解决这一限制,我们引入了一个框架,用于使用完善的通用 KG 来丰富小规模领域特定知识图谱的嵌入。采用我们的方法,当链接到大量通用 KG 时,适度的领域特定 KG 可以从下游任务的性能提升中受益。实验评估表明性能显着增强,Hits @ 10 指标最高可提高 44%。这个相对未被探索的研究方向可以催化知识图谱更频繁地融入知识密集型任务中,从而产生更稳健、更可靠的机器学习实现,这比普遍存在的 LLM 解决方案更少产生幻觉。
2021 年 8 月 27 日 — • 电子情报 (ELINT) 分析师。• 新兴... 为美国国家、国防和采购社区提供情报。
我们已审查了您根据第 510(k) 条提交的上述器械上市前意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据法案的一般控制规定销售该器械。虽然这封信将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不评估与合同责任担保相关的信息。但是,我们提醒您,设备标签必须真实,不得误导。
背景:2型糖尿病(T2DM)是极大地影响菲律宾家庭的主要慢性病之一。药物不遵守是为患有这种情况的个体实现最佳治疗结果的重大挑战。目的:这项研究确定了药物依从性的水平,并探讨了在宿雾南方医学中心(CSMC)家庭医学门诊诊所的T2DM患者不存在的相关因素。方法:从8月至2023年10月,在CSMC家庭医学门诊诊所进行了一项横断面研究。采用了一份自我管理的问卷,分为三个不遵守领域。的含义,频率和百分比用于分析依从性,社会人口统计学和临床因素的水平。逻辑回归分析用于确定因素与药物不遵守的关联。结果:共有69名参与者。总体而言,部分遵守T2DM药物。在与成本相关的不遵循(CRNA)结构域中,部分依从性(39.1%)存在很高的患病率。的因素显示出非依从性不足增加的因素包括年龄(AOR 1.363,95%CI 0.345-5.386),女性(AOR 1.544,95%CI 0.386-6.176),低收入(AOR 1.05,95%CI 0.352-3.135%),1.135%的频率(AOR 1.05%) CI 0.44-4.664),T2DM的持续时间不到10年(AOR 1.99,95%CI 0.46-8.637)。结论:对糖尿病药物的依从性可能会受到药物成本和财务状况的影响,这反映在总体部分依从性,CRNA领域中部分依从性的高度流行以及不遵守低收入与低收入的优势增加。应该进行更多的研究,以调查对糖尿病药物(例如糖尿病知识,患者的自我效能感和医疗保健提供者沟通)不遵守的其他可能因素。
简介大型AI模型,例如DeepSeek和Chatgpt,在解决常见问题方面表现出了令人印象深刻的能力,通常与博士专家的级别相当。在解决这些类型的查询时,两个模型都会相似地执行,因此很难区分它们。这种情况类似于为博士研究生和高中生提供高中物理问题 - 两者都可以提供令人满意的答案。但是,当问题冒险进入更高级领域时,真正的区别就会显而易见。本文将评估模型在尖端研究问题上的表现,尤其是在可靠知识仍在不断发展的领域中。这样的例子是Crookes辐射仪的操作,这是理解布朗运动和相变的核心机制。Crookes辐射计(通常称为灯厂)由安装在低压保持在低压玻璃灯泡内的低摩擦主轴上的一组叶片组成,如下图所示。每个叶片在一侧涂成黑色,另一侧为白色。暴露于光线时,叶片随着黑色的侧面移开光源而旋转。旋转速度随光的强度增加,最佳性能的压力约为1 pa。
On-On-On-On-Orbit服务(OO)包括一系列服务类型,以增加卫星的寿命及其性能,并确保它不会助长太空碎片的日益增长的问题。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。 在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。 这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。
基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
福利和承保范围(SBC)文件摘要将帮助您选择健康计划。SBC向您展示了您和计划将如何分享涵盖医疗服务的费用。注意:将单独提供有关此计划成本(称为保费)的信息。这只是一个摘要。有关您的覆盖范围的更多信息,或获取完整覆盖条款的副本,请访问https://ambetterhealth.com/2025-brochures.html,或致电1-877-687-1169(Relay Floray Florida 1-800-955-8770)。有关通用术语的一般定义,例如允许金额,余额计费,共同保险,共付额,可扣除,提供者或其他下划线条款,请参见词汇表。您可以在https://www.healthcare.gov/sbc-glossary上查看词汇表,也可以致电1-877-687-1169(接力佛罗里达1-800-955-8770),以请求副本。