•我们的氢生产技术没有直接排放,并且达到了超低碳强度,比CCS(ATR+CCS)的最先进的自动热改革低15-20%。•CO 2的捕获固有地内置在过程设计中,捕获超过99.5%,同时避免使用有毒化学物质或能源密集型过程。•结合了商业证明的氢生产过程的优势,以可靠地提供清洁和负担得起的能源。•利用尾巴气体的氧气燃烧来提供改革和热积分的热量,使高效的循环具有5-7%的热效率增益,而基准ATR+CCS。•结合在一起,与目前市场上所有公用事业规模的氢技术相比,8RH 2的平整成本无与伦比。•轻松地与氨循环技术集成,以实现超低碳氨的产生,该氨可以作为商品交易或用于更容易的H 2运输。
•我们的氢生产技术没有直接排放,并且达到了超低碳强度,比CCS(ATR+CCS)的最先进的自动热改革低15-20%。•CO 2的捕获固有地内置在过程设计中,捕获超过99.5%,同时避免使用有毒化学物质或能源密集型过程。•结合了商业证明的氢生产过程的优势,以可靠地提供清洁和负担得起的能源。•利用尾巴气体的氧气燃烧来提供改革和热积分的热量,使高效的循环具有5-7%的热效率增益,而基准ATR+CCS。•结合在一起,与目前市场上所有公用事业规模的氢技术相比,8RH 2的平整成本无与伦比。•轻松地与氨循环技术集成,以实现超低碳氨的产生,该氨可以作为商品交易或用于更容易的H 2运输。
Acronym Description AC Alternating Current ACQ Agreed Contract Quota AEMO Australian Energy Market Operator AN Ammonium Nitrate ANT ANT Energy Solutions ATO Australian Tax Office BOM Bureau of Meteorology BOP Balance of Plant BOS Balance of Stack BTM Behind the Meter CAPEX Capital Expenditure CCS Carbon Capture & Storage CEDI Continuous Electrodeionisation CF Capacity Factor CPI Consumer Price Index CSIRO The Commonwealth Scientific and Industrial Research Organisation DC Direct Current DI water Demineralised Water DNM Dyno Nobel Moranbah EBITDA Earnings Before Interest Taxation Depreciation and Amortisation EPC Engineer, Procure & Construct EPCM Engineer, Procure & Construct Management FCPM Fuel Cell Power Module FEED Front End Engineering Design GCR Ground Coverage Ratio GFT Ground Fixed Tilt GH Grey Hydrogen GHI Global Horizontal Irradiance H 2 Hydrogen H 2 O Water HAZOP Hazard and可操作性研究HV高压HVAC供暖,通风和空调IAR冲击评估报告IPL Incitec Pivot Ltd IRR内部回报率KOH氢氧化钾氢氧化钾LCOE LCOE级别的能源LCOH升级的成本LOCH的氢氢化成本升级了氢的成本 OEM Original Equipment Manufacturer OPEX Operational Expenditure ORC Organic Rankine Cycle P&ID Piping and Instrumentation Diagram PEM Proton Exchange Membrane PLC Programmable Logic Controller PPA Power Purchase Agreement PV Photovoltaic RFP Reinforced Fibre Polymer RH Renewable hydrogen RHF Renewable hydrogen Facility RO Reverse Osmosis ROM Rough Order of Magnitude SAT Single Axis Tracking SHE Safety Health & Environment SLD Single Line Diagram
摘要:随着人们越来越关注将大量可再生能源整合到能源供应系统中,满足这些可再生能源的可行性的需求变得迫在眉睫。除了将电力储存在电化学储存单元中之外,部门耦合的概念还可以提供所需的灵活性和储存容量。需要一个强有力的指标来确定不同部门耦合能源系统的可行性和经济可行性。本次会议研究提出了一种制定关键绩效指标 (KPI) 列表的经验方法,因为直接将能源系统的 KPI 与单一能源向量进行调整并不总是可行的。该列表是根据 H2020 研究项目 E-Land 内的利益相关者研讨会制定的。作者建议引入三个新指标来评估部门耦合能源系统,即自主度、能源平准化成本和部门耦合度。对部门耦合案例研究进行了评估,以验证这些新指标的性能,同时证明它们有助于更好地协助决策。
AEL Alkaline electrolysis bbl Barrels of oil BMWi Bundesministerium für Wirtschaft und Energie BF-BOF Blast furnace - basic oxygen furnace CCS Carbon capture and storage COVID 19 Coronavirus pandemic 19 CPG Compagnie des Phosphates de Gafsa CSP Concentrated solar power d Day DAC Direct air capture DAP Diammonium phosphate DCP磷酸钙DLR德国航空航天中心dri-eaf直接降低铁电弧炉EAF电弧炉EHS欧洲氢策略ETAP ENTREPRISE tumisienned'ActivitésPétrolièresPétrolièresETS ETS ETS ETER EUSOR EUSOUR EUSOUR EUS ERSISSION ERSIONS TRADION贸易计划图GCT组Chimique突尼斯同上。Ibidem IEA International Energy Agency IRENA International Renewable Energy Agency LCOE Levelised cost of electricity LPG Liquid petroleum gas MAP Monoammonium phosphates NHS National hydrogen strategy of Germany PEM Polymer electrolyte membrane-electrolysis PtG Power-to-gas PtH Power-to-heat PtL Power-to-liquid PtX Power-to-X SNG Synthetic natural gas STEG Société tunisienne del'électricitéet du gaz stroussociététunisienne des Industries du raffinage tab。表TCO总拥有成本TSP TSP三重超级磷酸盐USGS美国地质调查局Wi Wuppertal InstitutfürKlimaUmwelt,Energie GmbH
存储成本 Joule 在线杂志 1 发表了关于存储成本水平的详细分析,Vox 2 也对此进行了报道。简而言之,他们分析了存储作为可再生能源发电的后备能源需要达到的“能源存储容量成本”水平,以便让其价格实惠。他们分析了四个地方持续时间最长的天气模式(这些地方需要这种后备能源)和可再生能源发电的成本,并由此得出了可以淘汰化石燃料后备电厂的存储目标成本。在欧洲,长期的可再生能源低发期是“kalte dunkel Flaute” 3 。每隔几年,这将会覆盖欧洲大部分大陆的两周时间。如果将地理范围缩小到几个国家,持续时间缩小到几天,那么这种情况就会经常发生,每年都会发生很多次。如果考虑到夜间可以忽略不计的能源生产,那么这种情况就非常频繁了。让我担心的是,即使看过原文,也没有对“储能容量成本”做出定义 - 它到底是什么?♦ 每年每兆瓦时的资本成本?♦ 储能的平准化成本?♦ 电力的平准化成本,即包括购买输入电力的成本?它们的成本以美元/千瓦时为单位,因此乘以一千即可得到我们的美元/兆瓦时(我没有进行货币转换,因为货币波动太大)。他们的目标是“储能容量成本为 10-12 美元/千瓦时”= 100% 可用性电网的 10-12k 美元/兆瓦时。对于 95% 可用性电网,“储能容量成本”门槛为 150 美元。以我们的 40MW 200MWh 电厂为例,♦ 假设它每天运行 4.5 小时,每年运行 350 天,每年将产生 63,000MW 的电力,电厂成本为 6,000 万美元,这相当于每发电 MWh 的资本支出为 0.95 美元;加上当年 5% 的资本成本,这正好上升到 1 美元。◊ 将持续时间加倍,TES CAES 的资本支出将增加约 30%,CCGT CAES 的资本支出将增加约 15%,因此持续时间较长的电厂每 MWh 的资本支出更便宜。◊ 这种版本的“储能容量成本”、LCOS 和 LCOE 不会从规模中受益,因为它们主要取决于电力吞吐量,而不是持续时间。♦ 我们估计的 LCOS 为 68 美元/MWh。♦ 我们估计的 LCOE 为 110 美元/MWh。 1 https://www.cell.com/joule/fulltext/S2542-4351(19)30300-9 2 https://www.vox.com/energy-and-environment/2019/8/9/20767886/renewable-energy-storage-cost- 电力 3 https://energytransition.org/tag/dunkelflaute/
表1。Summary of recommended bioLPG pilot projects ..................................................... 12 Table 2.Conversion routes and feedstock characteristics ....................................................... 25 Table 3.Biogas potential from crop residues in Ghana ........................................................... 34 Table 4.Mass balance for IH 2 route ......................................................................................... 55 Table 5.资本,运营成本和IH 2的液化石油气的升级成本AD + Coollpg的质量平衡.............................................................................................................................................................................................................................................................................................................................................................................................................................................Capital, operating and levelised LPG costs of CoolLPG plant ..................................... 56 Table 8.Template for feedstock cost data collection ............................................................... 57 Table 9.Ghana feedstock cost scenarios for MSW to IH 2 ........................................................ 60 Table 10.加纳原料成本方案是MSW到AD + COOLLPG ........................................................................................................................................................................................................................................................................................................................................................... 61表11。肯尼亚的原料成本方案,用于AD + COOLLPG的农业藏书……65表12。Rwanda feedstock cost scenarios for MSW to IH 2 .................................................... 67 Table 13.卢旺达原料的成本方案,用于AD + COOLLPG ............................................................................................................................................................................................................................................................................................................................... 68表14。Financial characteristics of the five pilot projects .................................................... 73 Table 15.非洲国家第一阶段分类中使用的因素........................................................................................................................................................................................................................................... 99表16。Financial model ....................................................................................................... 107 Table 17.Technology rating criteria ....................................................................................... 113 Table 18.AD + COOLLPG工厂的总资本需求因素.........................................................................................................................................................................................................................Roundtable on Sustainable Biomaterials Principles ............................................... 117 Table 20.报告焦点国家的生产量的生产量。118表21。CHP和BIOLPG植物的比较 - 投资,原料使用和影响。122图1。Map of potential routes to bioLPG ........................................................................... 15 Figure 2.CoolLPG route to bioLPG ........................................................................................... 19 Figure 3.IH 2 route to bioLPG ................................................................................................... 21 Figure 4.Comparisons and scoring of bioLPG technical routes ............................................... 24 Figure 5.在喀麦隆杜阿拉(DoualaHVO,Coollpg和IH 2的高级比较2 ...........................................................................................................................................................................................................................................................................................Costs and outputs for renewable diesel/biopropane plants .................................... 53 Figure 8.Simplified diagram for MSW via IH 2 to gasoline and LPG ......................................... 54 Figure 9.通过AD,Miogas和coollpg到LPG的有机废物的简化图.. 56图10。Capitalisation and risk mitigation stages by capital source .................................... 77
图1-1:订单限制和主机授权边界。图2-1:英国太阳能照射图2-2:能源比较的水平成本图3-1A:订单限制以及周围区域中的应用以及订单限制图3-1b:农业谷仓的申请以及Marton附近的38个住宅和Marton附近的38个住宅图3-2 4-4:典型的绳子逆变器图4-5:典型的变压器机舱图4-6:贝斯/变电站位置考虑的选项图4-7:场地布局计划图5-1:访问位置和目的计划图5-2:公共权利图7-1图7-1:农业土地范围内限制7-2:图7-2:农业土地在15 km范围内的15 km schem schem schem comul nive
生产清洁能源和减少能源浪费对于实现联合国可持续发展目标(如可持续发展目标 7 和 13)至关重要。这项研究分析了多兆瓦级绿色氢气生产中废热回收的技术经济潜力。一个 10 MW 质子交换膜电解过程被建模为一个热回收系统和一个有机朗肯循环 (ORC) 来驱动氢气的机械压缩。技术结果表明,当实施与 ORC 相结合的废热回收时,电解器的第一定律效率从 71.4% 提高到 98%。ORC 可以产生足够的功率来驱动氢气的压缩,从电解器出口压力 30 bar 到 200 bar。进行了经济分析以计算系统的平准化氢气成本 (LCOH) 并评估实施与 ORC 相结合的废热回收的可行性。结果表明,电价决定了 LCOH。当电价较低时(例如专用海上风电),实施热回收的 LCOH 较高。额外的资本
然而,海上风电的部署也面临着自身的挑战。尽管该技术本身的成本已大幅降低——2010 年至 2022 年间,平准化电力成本 (LCOE) 4 下降了 59%,但当前的大宗商品价格上涨和更高的利率仍是一个充满挑战的环境。此外,如果我们要加速各行业向能源转型,还需要进一步努力解决诸如通过新的互连将该技术整合到能源系统中、供应链瓶颈和物流挑战、对关键材料和回收的需求或对更大涡轮机和更坚固基础的需求等因素。如今,海上风电市场仍然小于陆上风电市场,到 2022 年总装机容量将达到 63 吉瓦。考虑到各国根据 IRENA 的计划能源情景 (PES) 设定的当前计划和目标,全球累计海上风电容量预计将分别在 2030 年达到 275 吉瓦和 2050 年接近 1 200 吉瓦。这仍落后于 IRENA 1.5°C 情景下 2030 年和 2050 年分别实现 494 吉瓦和 2465 吉瓦的目标。5