抽象的全稳态电池(ASSB)被认为是提高电池安全性和能量密度的最有希望的候选者。硫化物电解质具有狭窄的电化学窗口,该窗口阻碍了其应用与高压阴极。具有高压耐力的卤化物电解质可以帮助解决此问题。在此,采用喷涂和污染方法的组合用作处理自由的LI 6 PS 5 Cl(LPSCL)不对称的电解质膜(19.23Ωcm2,75μm),用10μmLi3包含6(Licl)层装饰。LICL-LPSCL不对称的电解质膜增强了高压稳定性,使LINI 0.83 CO 0.83 CO 0.11 Mn 0.06 O 2(NCM811)和LI 1.2 Ni 0.13 CO 0.13 CO 0.13 CO 0.13 Mn 0.54 0.54 O 2(LRMO)Cathodes。NCM811 | LICL-LPSCL | NSI ASSB的初始库仑效率(ICE)为85.13%,在200个周期后的容量保留率为77.16%。Compared with the LPSCl membrane, the LICl-LPSCl membrane displayed high stability with the LRMO cathode as the charging cut-off voltage increased to 4.7 V, which improved the initial charge capacity from 143 to 270 mAh g −1 and achieved stable cycling of 160 mAh g −1 at 0.5 C. Additionally, we attempted continuous LICl-LPSCl membrane production and utilized the product to fabricate a基于LRMO的小袋型ASSB。LICL-LPSCL电解质膜的制造证明了其在Assbs中的可控和行业适应应用的潜力。
摘要输卵管上皮细胞 (FTEC) 被认为是高级别浆液性卵巢癌的起源细胞。FTEC 类器官可用作该疾病的研究模型。然而,培养类器官需要补充多种昂贵生长因子的培养基。我们提出,基于输卵管成分的组合条件培养基,包括上皮细胞、基质细胞和内皮细胞,可以增强 FTEC 类器官的形成。我们从输卵管的伞部获得了两种原代培养细胞系。根据类器官生长的培养基,将它们分成常规或组合培养基组并进行比较。评估了类器官的数量和大小。定量聚合酶链反应 (qPCR) 和免疫组织化学 (IHC) 用于评估基因和蛋白质表达 (PAX8、FOXJ1、β-catenin 和干性基因)。酶联免疫吸附测定用于测量两种培养基中的 Wnt3a 和 RSPO1。将 DKK1 和 LiCl 添加到培养基中以评估它们对 beta-catenin 信号传导的影响。通过生长因子阵列评估组合培养基中的生长因子。我们发现常规培养基更有利于类器官的增殖(数量和大小)。此外,组合培养基中的 WNT3A 和 RSPO1 浓度太低,需要添加,使得成本与常规培养基相当。然而,两组的类器官形成率均为 100%。此外,与常规培养基组相比,组合培养基组的 PAX8 和干性基因表达(OLFM4、SSEA4、LGR5、B3GALT5)更高。在常规培养基中生长的类器官中 Wnt 信号明显,但在组合培养基中则不明显。发现 PLGF、IGFBP6、VEGF、bFGF 和 SCFR 在组合培养基中富集。总之,组合培养基可以成功培养类器官并增强 PAX8 和干性基因表达。然而,传统培养基对于类器官增殖而言是更好的培养基。两种培养基的费用相当。使用组合培养基的好处需要进一步探索。
简介 糖尿病是由正常功能的胰岛素分泌胰腺 β 细胞数量不足引起的 (1–4)。这促使人们尝试诱导 1 型糖尿病 (T1D) 和 2 型糖尿病患者体内残留的 β 细胞复制或再生。在过去的 4 年中,几个研究小组已经证明,抑制 β 细胞激酶、双特异性酪氨酸磷酸化调节激酶 1A (DYRK1A) 的药物能够在体内和体外诱导人类 β 细胞增殖。这类促进人类 β 细胞增殖的 DYRK1A 抑制剂包括哈尔明、INDY、亮氨酸-41、GNF4877、5-碘代结核菌素 (5-IT)、TG003、AZ191、CC-401 以及最近合成的 DYRK1A 抑制剂 (5–13)。多项报告显示,此类药物的人类 β 细胞增殖活性可通过沉默 DYRK1A 来模拟,而可通过在人类 β 细胞中过表达 DYRK1A 来抑制该活性 (5–7),这清楚地表明 DYRK1A 是这些药物增殖反应的重要介质。另一方面,有证据表明,DYRK1A 抑制剂可能还有其他靶点参与诱导人类 β 细胞增殖。首先,多个研究小组进行的激酶组筛选表明,每种 DYRK1A 抑制剂也能抑制其他激酶,特别是 CMGC(细胞周期蛋白依赖性激酶 [CDK]、丝裂原活化蛋白 [MAP] 激酶、糖原合酶激酶 3 [GSK3] 和 CDC 样激酶 [CLK])类的成员,特别是 DYRK1B、DYRK2、DYRK3、DYRK4、CLK1、CLK2、CLK4、GSK3 α、GSK3 β 和酪蛋白激酶 (CSNK) 1A、1D 和 E (7–13)。理论上,这些激酶都可能参与人类 β 细胞增殖。这里特别值得一提的是 GSK3,因为据报道,在小鼠中对 GSK3 β 进行基因或药物干扰会导致啮齿动物 β 细胞增殖(14、15),Shen 等人。研究表明,GSK3 β 抑制剂可能有助于 GNF4877 的疗效 (8)。另一方面,在人类中报道的数据有限。例如,刘等人报道,GSK3 β 抑制剂 LiCl 和 1-Akp 可使人类 β 细胞 Ki67 免疫标记从 0.17% 增加到 0.71% (15)。其次,每种 DYRK1A 抑制剂的剂量反应曲线揭示了人类 β 细胞
摘要:热电池(TBS)是使用无机盐电解质的主要储备电池。这些电解质是在环境温度下的非导电固体。烟火材料用于提供足够的热能以熔化电解质并激活电池。TBS用于各种国防部申请,包括导弹和弹药。热电池的基本单元由阳极和阴极组成,该阳极由粘合剂材料隔开,注入了盐电解质。粘合剂材料提供结构支撑,并在激活电池时将阳极和阴极分开。粘合剂材料的关键性能特征是提供可靠的结构支持的能力,同时最大化电解质结合特性以最大程度地减少所需的粘合剂体积。没有足够的性能材料,无法保持阳极和阴极之间的缝隙,从而导致电压噪声,局部加热或Intracell Short。商业生产的两种表现最高的粘合剂材料是Maglite S和Marinco ol,由于经济原因,它们的制造商都被其制造商停止了。曾经没有提供过使用的前体或制造过程的文档,以允许重新创建产品。随后,结核病制造商一直在使用越来越多的库存和/或开发的定格间隙非最佳(较低性能)但足够的解决方案来满足军事需求。在本文中这些粘合剂遭受了过程的不稳定性和间歇性失败的困扰,政府花了数百万美元来容纳缺乏可靠性。Qynergy为二进制LICL:KCLELECELETE开发了氧化镁(MGO)粘合剂材料(“ Gomax”),以优于该行业中使用的现有粘合剂材料。Qynergy通过科学地设计了该材料,现在可以从几个前体供应商中生产出来,从而减轻供应链风险。Qynergy的Gomax MGO都将确保当前的热电池制造供应链,并在结核病应用程序空间中提高性能。已经研究了驱动粘合剂性能的机理和粉末特性。这种理解允许对特定的热电池应用来优化和控制粘合剂材料的特性,并实现了国防部长(OSD)制造科学技术计划(MSTP)下实现的规模生产。