本报告是美国政府资助工作的记录。美国政府及其任何机构或任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
1 激光雷达技术 相位检测 2 波长 860 nm 3 深度范围 可达 12 米 4 深度精度 < 10 cm,范围可达 5 米 5 更新率(摄像头) 5 Fps 6 FOV 90ºx60º 7 每帧 3D 点数 每帧 76800 个点 8 尺寸 370 x 275 x 246 mm 9 重量 8 Kg
沃尔沃汽车和芬兰高端增强现实耳机制造商 Varjo 共同创建了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车技术基金决定投资 Varjo,这将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,这些功能对驾驶员和汽车传感器来说都是真实的,用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合或虚拟现实。它使用高清摄像头并实现混合现实。这使设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在它们问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构佩戴耳机驾驶真实汽车,测试通过增强现实在现实环境中实施的虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。
沃尔沃汽车和芬兰高端增强现实耳机制造商 Varjo 共同创建了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车技术基金决定投资 Varjo,这将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,这些功能对驾驶员和汽车传感器来说都是真实的,用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合或虚拟现实。它使用高清摄像头并实现混合现实。这使设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在它们问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构佩戴耳机驾驶真实汽车,测试通过增强现实在现实环境中实施的虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。
I. 引言 如今,LiDAR(光探测和测距)被广泛用于检查大气的各种特性、自动驾驶以及测绘和地形等许多其他方面。如今,LiDAR 在自动驾驶方面的可能性正在高度发展,但如果我们考虑其他类型的交通,如远洋运输或一般的运输和导航,我们就会发现它还没有得到充分的开发和利用,无法满足更安全的运输需求。这个话题可能被忽视,因为水下使用存在局限性,与 LiDAR 在大气和地球表面的使用相比,这似乎导致了更多有关其发展的问题。本文讨论了如何使用 LiDAR 造福航运、导航、自主导航、当前天气测量和检测,并提出了一些建议。这项工作的范围是介绍 LiDAR 在航运中可以提供的多种用途,以及为深海海底和水下世界探测提出的整体解决方案。一些新的和不为人熟知的 LiDAR 用途可能会在许多方面改变未来,对此,我们进行了一番思考。我想强调一下 LiDAR 在海岸线保护、深海海底物种、动物、藻类和其他水生植物以及海绵生物分析方面可能发挥的作用。此外,其中一个有趣的应用是检测水的盐度水平和分析水下矿物的化学性质。稍后,我们将提到 LiDAR 的更多应用及其优势,这些应用可以为人类带来更多关于水下世界的知识。
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
Leica Geosystems 是唯一一家提供基于通用传感器平台(包括系统外围设备和软件)的成像和 LiDAR 解决方案的供应商。用户可以在系统之间共享组件和通用操作员和飞行员界面,以便在所有机载传感器上进行简单、一致的安装,无论使用哪种系统,都能在地面处理和操作员培训方面提供协同效应。同样,通用任务规划使小型劳动力能够高效地规划各种任务,所有这些都来自熟悉的规划界面。这可以实现高效的工作流程、减少培训并节省成本。
实验大气科学在大气化学领域蓬勃发展。在过去四年中,在 Greg Kok 的领导下,ATD 已能够在研究航空设施中开展大量开发工作,以进行基本的现场测量。在 Joost Businger、Tom Horst、Tony Delany、Vim Kosiek、Steve On-cley 等人的领导下,地面和探测系统设施最近完成了大气表面湍流交换研究 (ASTER) 设施的第一阶段开发。如果 ATD 设施要满足化学和相关全球变化社区的合法需求,这些良好的开端必须得到扩展和拓宽。可变成分分析和远程通量估计是位于地面和机载平台上的新仪器的候选领域。获得一架高性能中型喷气式飞机是绝对必要的,因为它是开展与全球气候变化相关的过程研究的许多测量的基础。
激光雷达系统的质量保证 – 任务规划 Kutalmis Saylam GeoBC 英国皇家登记处和地理基地 (CRGB) 分支机构 1 楼,3400 Davidson Ave,维多利亚,BC V8Z 3P8 加拿大 Kutalmis.saylam@gov.bc.ca 摘要 任务规划被认为是机载光探测和测距 (LiDAR) 调查的一个重要方面,有助于提高整体质量保证 (QA) 体验。由于 LiDAR 是一种相对较新的空间数据采集实践,因此可能找不到有关如何为此类任务做好准备的完整文档。一些公共和私人组织提供了抽象信息;但是,这些资源都没有提供完整记录和详尽的解释。在整个行业中,大多数机载 LiDAR 任务都是利用参与早期项目的人员的专业知识准备的。正式培训并不常见,而“在职学习”可能会给未来带来麻烦。此外,有各种类型的机载 LiDAR 调查需要特定的专业知识,但所掌握的专业知识可能不适用于不同类型的调查。建议现场和办公室经理在任务启动前非常仔细地评估项目要求和可用资源。有基本要求,也有不太重要的行动。由于机载调查的多变性,所有阶段都需要稳定观察,以防止可能代价高昂的变化或任务失败。为了尽快完成项目,各种项目都会遇到困难,导致忽略和跳过 QA 程序。仔细评估要求并适时规划对于成功完成任务至关重要。良好的任务规划需要仔细和广泛地考虑项目的各个阶段。因此,作者认为需要详细的机载 LiDAR 任务规划文档,为 LiDAR 社区提供帮助。简介 质量保证程序是指有计划和系统的流程,可确保产品或服务的有效性。这适用于所有形式的活动;设计、开发、生产、安装、服务和文档阶段。机载 LiDAR 任务规划的 QA 是指预测和管理活动,以确保以尽可能高的质量执行和完成拟议的任务。图 1 说明了一般 QA 模型流程图。这些活动通常包括良好的任务规划、准确的系统配置、完善的数据处理和完整的项目交付。
热带雨林是主要的陆地生态系统之一,通过碳封存对缓解全球气候变化发挥着重要作用。近年来,机载 LiDAR(光检测和测距)和地面激光扫描仪(TLS)在测量和提取森林生物物理参数和特性以及估算地上生物量(AGB)和碳储量方面的应用日益广泛。到目前为止,关于在热带雨林生态系统中使用地面激光扫描仪(TLS)的研究很少。因此,本研究的主要目的是评估地面激光扫描仪和机载 LiDAR 在热带雨林中估算地上生物量和碳储量的表现。通过从数字表面模型(DSM)中减去数字地形模型(DTM),从机载 LiDAR 数据生成冠层高度模型(CHM)。使用多分辨率分割对机载 LiDAR 的 CHM 进行了分割。人工勾画上部树冠,并采用 D“拟合优度测量”方法评估分割精度,精度为 68.6%。使用地面激光扫描仪 (TLS) 通过多个扫描位置收集点云数据。在配准点云数据(误差为 0.016m)后,在 779 棵树中,提取了 627 棵树(80.5%),遗漏了 152 棵树(19.5%)。树木参数、胸高 (DBH) 和 He