具有较大的扫描范围,精细的角度分辨率和高灵敏度,Picoscan100 2D激光雷达传感器(TIM系列的继任者)正在设定新标准。它还可靠地检测到小物体和深色物体。传感器提供精确的测量数据和功能,整合了通过各种通信接口传输的数据的进一步处理。配备了多回波技术的紧凑型Picoscan100具有坚固的外壳,即使在恶劣的环境条件下,也可以确保可靠的测量重新设置。picoscan100(可分为三种变体)也可以通过其他功能进行定制。
摘要 - 动物机器人越来越多地在实际会随着时间而变化的现实环境中运行。准确且健壮的本地化对于自动移动系统的有效运行至关重要。在本文中,我们仅使用3D LIDAR数据来应对基于扫描到地图匹配的长期本地化开发可推广的学习过滤器的挑战。我们的主要目标是提高动态环境中移动机器人本地化的可靠性。为了获得学习过滤器的强大概括能力,我们利用扫描和MAP数据之间的差异。我们的方法涉及将稀疏的4D卷积应用于包含扫描素及其相应地图体素的关节稀疏体素电网上。这使我们可以根据每个扫描点的长期稳定置信分数将扫描点分为稳定且不稳定的点。我们的实验结果表明,利用稳定点进行定位 - 证明了扫描匹配算法的性能,尤其是在外观变化频繁的环境中。通过利用扫描和地图体素之间的差异,我们增强了稳定点的分割。因此,我们的方法概括为新的,看不见的环境。
摘要 - 对象检测是一个关键函数,可从传感器获取的数据中检测对象的位置和类型。在自主驾驶系统中,使用来自摄像机和激光镜头的数据进行对象检测,并根据结果,控制车辆以遵循最安全的路线。但是,据报道,基于机器学习的对象检测具有对对抗样本的脆弱性。在这项研究中,我们提出了一种新的攻击方法,称为LIDAR对象检测模型“ Shadow Hack”。虽然先前的攻击方法主要添加了扰动点云到激光雷达数据中,但在这项研究中,我们引入了一种在激光雷达点云上生成“对抗阴影”的方法。特别是,攻击者从战略上放置了诸如铝制休闲垫之类的材料,以在激光雷达点云上重现优化的位置和阴影的形状。该技术可能会在自动驾驶汽车中误导基于激光雷达的对象检测,从而导致诸如制动和避免操纵之类的行动导致交通拥堵和事故。我们使用仿真来重现Shadow Hack攻击方法,并评估攻击的成功率。此外,通过揭示攻击成功的条件,我们旨在提出对策并有助于增强自动驾驶系统的鲁棒性。
近年来,自动驾驶汽车发动机传感器攻击的风险引起了人们的显着关注。这些攻击操纵传感器读数,对基于机器学习模型的对象识别系统构成威胁。非常关注的是“ LiDAR SPOOFENG攻击”,它向欺骗传感器注入恶意信号以检测非易于或缺失的对象[1,2]。这些攻击目标传感器,数据处理和机器学习模型,强调了增强传感器安全性并增强模型鲁棒性的要求。本研究提出了一个新的使用LIDAR的传感系统的攻击矢量,以“ Shadow Hack”,目的是应对其威胁并开发有效的对策。此攻击的概念在于利用激光雷达传感器捕获的点云数据中自然形成的“阴影”(见图1)。LIDAR传感器产生指示对象存在的点云数据,但该数据还包括对象后面形成的阴影。通常,这些阴影在对象检测模型的输出中被忽略,但是它们的存在为对象检测提供了重要的线索。影子黑客通过故意创建它们来欺骗对象检测系统并导致它们出现故障来利用“阴影”的属性。例如,通过放置“阴影材料”,例如在环境中,可以在激光雷达传感器捕获的点云数据中创建误差阴影,从而导致对象检测模型检测不存在的对象(请参见图2)。
摘要 - Lidar是自动驾驶汽车领域(AVS)领域的关键传感器。怨恨的研究积极研究了针对LiDAR SPOFOFG攻击的各种安全意义。为了防止这些攻击,预计Pulse -Fifferpinting是最有前途的对策之一,最近的研究表明了其高防御能力,尤其是防止物体清除攻击。在此海报中,我们报告了针对激光雷达攻击的脉冲固定识别进一步的安全性分析的进展。我们设计了一种新颖的自适应攻击策略,即自适应高频去除(A-HFR)攻击,这比现有的HFR攻击可以有效地抵抗更广泛的激光痛。我们评估了对商用激光雷达的A-HFR攻击,并发现A-HFR攻击可以成功地在20°水平和16°垂直角度内成功删除点云的96%以上。我们的发现表明当前的脉冲固定技术可能不会有足够的稳定性来阻止SPOOFEFFIFG攻击。我们最终讨论了我们的未来计划。
摘要在这项研究中,我们从安装在车辆上的3D激光雷达和外部交通监视摄像头的图像中融合数据,以创建经常洪水泛滥的道路部分的3D表示。这项研究中的LIDAR的点云数据是从ODU校园附近Norfolk的W 49街的一条路段收集的。交通监视摄像头安装在同一地区的公共停车大楼上。LIDAR在车辆穿越该部分时会收集连续的点云框架。使用ICP注册方法将与外部摄像头监控的多个与各个道路相关的LIDAR框架首先合并为单位点云,代表路段的局部高分辨率数字高程模型(DEM)。然后,将结果的DEM投射到监视摄像头捕获的被淹没的道路的图像上。到此目的,采用了摄像机校准技术来估计转换参数。相机校准方法依赖于一个包含点及其相应像素的数据集中的目标图像。生成了点的虚拟网格和相应的像素以运行相机校准函数。提到的数据集是借助激光雷达的内部相机上的投射点云而生成的,从而使我们能够识别对象和Curbsides。还采用了观点几何原则来创建DEM。投影结果显示了用于摄像机校准的技术技术的成功性能。深度估计是在外部相机记录的洪水图像上使用投影的DEM模型进行的。
摘要:车道图对于描述道路语义和使用本地化和路径规划模块实现安全的操作非常重要。这些图被认为是长寿细节,因为道路结构中发生了罕见的变化。另一方面,由于有必要使用不同的定位系统(例如GNSS/INS-RTK(GIR),Dead-Reckoning(DR)或SLAM Technologies)更新或扩展地图,因此可能会更改相应拓扑图的全局位置。因此,应将车道图准确地在地图之间传输,以描述车道和地标的相同语义。考虑到其在关键的道路结构中实施的挑战性要求,本文根据LiDAR强度路面在图像域中提出了一个独特的转移框架。目标图中的道路表面被分解为全球坐标系中的X,Y和YAW ID的定向子图像。XY ID用于使用参考图检测公共区域,而YAW ID则用于重建参考图中的车辆轨迹并确定相关的车道图。然后将方向子图像匹配到参考子图像,并将图形安全地传输。实验结果已经验证了所提出的框架在地图之间安全,准确地传输巷道图的鲁棒性和可靠性,无论道路结构的复杂性,驾驶场景,地图生成方法和地图全局精度的复杂性如何。
损失,可能永远不会实现易于实现,(ii)AEVA的运营历史有限,(iii)实施业务的能力
设计/方法论/方法:本研究介绍了Slam-Ramu,这是一个终生的大满贯系统,通过提供精确,一致的重新定位和自主地图更新来解决这些挑战。在映射过程中,使用迭代误差状态kalman滤镜获得局部探测器,而后端环检测和全局姿势图优化用于准确的轨迹校正。此外,还合并了一个快速点云分割模块,以牢固地区分环境中的地板,墙壁和屋顶。然后使用分段点云来生成2.5D网格图,特别强调地板检测以滤波先前的映射并消除动态伪像。在定位过程中,设计了一种初始姿势比对方法,该方法将2D分支和结合搜索与3D迭代最接近点(ICP)注册相结合。此方法即使在具有相似特征的场景中也可以确保高精度。随后,使用先前地图上的分段点云执行扫描到地图注册。该系统还包括一个地图更新模块,该模块考虑了历史点云分割结果。它有选择地合并或排除新的点云数据,以确保地图中真实环境的一致反射。