lifsi在20-40°C的温度范围内与LIPF 6相比,电导率提高了10%。t(li+)为0.50,高于LIPF 6的0.30。
摘要:Lini 0.5 Mn 1.5 O 4(LNMO)阴极的长期电化学循环寿命(LES)(LES)和对细胞衰竭机制的知识不足是雄辩的致命弱点对实际应用的雄辩,尽管它们具有较大的承诺,可以降低lithium-ion Batteries的成本(Libs)。在此,提出了一种工程的工程策略-LE界面以增强LIBS的循环寿命。通过简单的slot-slot-die coating,通过离子 - 电子(Ambiall)混合陶瓷 - 聚合物 - 聚合物电解质(IECHP)将阴极活性颗粒与LE之间的直接接触通过将溶胶 - 凝胶合成截短的八面体形的LNMO颗粒封装。IECHP覆盖的LNMO阴极显示出250个循环的能力逐渐衰减,1000次充电循环后的容量降低了约90%,显着超过了未涂层的LNMO阴极的能力(在980个周期后的〜57%)中,在1 m lipf 6中,ec in in 1 m lipf 6 in 1 m lipf 6 in in 1 m lipf 6 in in 1 c in in 1 cy n in 1 m lipf 6 in in ec:Dmc:通过聚焦离子束扫描电子显微镜和飞行飞行时间二级离子质谱法检查了两种类型的阴极之间的稳定性差异。这些研究表明,原始的LNMO在阴极表面产生不活动层,从而减少了阴极和电解质之间的离子转运,并增加了界面电阻。IECHP涂层成功克服了这些局限性。因此,目前的工作强调了IECHP涂层的LNMO作为1 M LIPF 6电解质中的高压阴极材料的适应性,以延长使用。拟议的策略对于商业应用来说是简单且负担得起的。
简介电解质溶液是典型的锂离子电池的关键部分,由Li盐组成(例如,LIPF 6)和有机碳酸盐。基于磷的和其他有机产品的分解和形成已经开始在电解质的生产阶段。只要数量足够低,这种分子的形成就不会对电解质/电池质量产生负面影响。相反,几种分解产物对LIB阳极上所谓的SEI表面(实心电解质界面)的形成具有积极影响,这对于电池功能至关重要。尽管如此,这是一个连续的化学过程,某些分解产物的增加数量是电池/电解质的进行性衰老的明显指标。该应用证明了对试验二磷酸盐的GCMS分析作为碳酸盐和LIPF 6盐的反应产物。选择该化合物作为电化学电池老化的标记是由于以下事实,它们的形成非常慢,仅取决于一些外部参数,从而可以通过对分析物含量之前/后的简单比较来研究电化学老化(电荷/放电)。
摘要电子和离子运输控制锂离子电池(LIB)操作。在不同电荷状态下锂离子过渡金属氧化金属(LMOX)阴极中电子传输的操作研究可以评估LIB的健康状况及其性能的优化。我们报告了在离子门控晶体管(IGT)构造中在Operando中控制的不同电荷状态的Lib阴极材料中的Electronic运输。我们考虑了LINI 0.5 MN 0.3 CO 0.2 O 2(NMC532) - 和LIMN 1.5 Ni 0.5 O 4(LNMO)基于常规Lib Cathodes中的配方材料,在有机电解质LP30中运行,并在有机电解质LP30中运行(1M Lipf 6中的LIPF 6中的LIPF 6中:乙烯碳酸烯基碳酸盐:Dimethylyyy基碳酸盐碳酸盐碳酸盐1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V/V)NMC532-和基于LNMO的阴极材料被用作转移通道材料,LP30用作离子门控培养基。超出了其对Lib的领域的影响,我们的工作将基于混合离子和电子传输(包括神经形态计算)的新型设备设计。
基于石墨的双离子电池(GDIB)代表了一个有前途的电池概念,用于大规模存储,因为低成本,工作电压高和可持续性。电解质浓度在确定GDIB的能量密度和循环寿命中起关键作用。然而,浓缩电解质显示出低锂离子(LI +)传输动力学,从而减少了它们的插入和固体电解质界面(SEI)形成能力。此外,高截止电压中的GDIB遭受电解质降解和当前收集器的腐蚀。在此,我们报告了一种高度浓缩的电解质配方,该配方基于杂交六氟磷酸盐(LIPF 6)和锂Bis(氟磺酰基)酰亚胺(LIFSI)盐(lifSI)盐具有超宽的电化学稳定窗口(6 V),以及能够形成SEI和Passivation and collecter andode andode andode andode andode andode andode andode andode andode andode andode andode andode andode andode andode。用LIPF 6和溶剂调节浓缩的LIFSI电解质
电池包含 1.0M LiPF 6 EC+DMC+DEC (1:1:1) (操作范围 –30 至 +40 o C) • 电解质由 JPL 于 1990 年代后期为 MSP'01 任务 (已取消) 开发。 • 尽管最初的要求仅限于在 0 o C 以上充电,但事实证明,这种化学物质在低至 -30 o C 的温度下充电也非常稳定。
储能电池的辐射耐受性是探索或核救援工作的关键指数,但没有对LI金属电池进行彻底的研究。在这里,我们系统地探索了伽马射线下Li金属电池的能量存储行为。在伽马辐射下Li金属电池的孔子降解与阴极,电解质,粘合剂和电极界面的活性材料有关。特定的,伽马辐射会触发阴极活性材料中的阳离子混合,从而导致极化和容量差。电解质中溶剂摩尔的离子化促进了LIPF 6的分解及其分解,分子链断裂和交联削弱了粘合剂的键合能力,从而导致电极破裂并减少活性材料利用。 此外,电极界面的恶化会导致LI金属阳极的降解并增加细胞极化,从而加快了Li金属电池的灭亡。 这项工作为辐射环境中的li batteries发展提供了显着的理论和技术证据。电解质中溶剂摩尔的离子化促进了LIPF 6的分解及其分解,分子链断裂和交联削弱了粘合剂的键合能力,从而导致电极破裂并减少活性材料利用。此外,电极界面的恶化会导致LI金属阳极的降解并增加细胞极化,从而加快了Li金属电池的灭亡。这项工作为辐射环境中的li batteries发展提供了显着的理论和技术证据。
摘要:我们利用飞行时间二次离子质谱 (TOF-SIMS) 和 X 射线光电子能谱 (XPS) 结合电化学技术对循环高镍(LiNi 1-x M x O 2 ,M = 金属)、富锂(Li 1+x Mn y M 1-xy O 2)和高压尖晶石(LiMn 1.5 Ni 0.5 O 4 )电极进行了全面研究,以更好地了解它们在循环过程中阴极-电解质中间相 (CEI) 结构的变化。TOF-SIMS 提供有关每个电极表面膜含量的碎片特定信息。高镍正极显示出厚的表面膜,最初含有 Li 2 CO 3,随后在循环过程中形成氧化有机碳酸盐。富锂电极表面膜在首次活化循环期间会形成强特性,其中释放的 O 2 会氧化有机碳酸酯形成聚合碳并分解 LiPF 6 。高压尖晶石电极在标准电解质稳定性窗口之外运行,产生活性氧化电解质物质,进一步分解 LiPF 6 。通过 TOF-SIMS 测量这些不同化学碎片的分布和浓度,最终通过循环高镍、富锂和高压尖晶石电极的彩色高分辨率图像进行总结。
图2。(a)[lipf 6]/[sl] = 1/4,(b)[liotf]/[liotf]/[sl] = 1/1,(c)[libf 4]/[libf 4]/[sl] = 1/1,(d)[litfsa]/[litfsa]/[sl] = 1/1,(e)[lifsa] [lifsa] = 1/1/1/1/2,(f)[lIDF) [LICLO 4]/[SL] = 1/2溶剂。(a)和(b)的晶体学信息(CIF)文件分别存放在剑桥晶体学数据中心(CCDC)中,分别为CCDC 2292897和CCDC 2292899。(c),(d),(e)和(f)的绘制。(g)从参考文献中报告的CIF文件中重新绘制。12。颜色代码:紫色,李;粉红色,b;灰色,c;蓝色,n;红色,o;浅绿色,f;橙色,P;和黄色的氢原子未显示。
电极中的界面不稳定性控制着锂离子电池的性能和寿命。虽然阳极上固体电解质界面(SEI)的形成引起了很多关注,但仍然缺乏对阴极上阴极 - 电解质界面(CEI)形成的阳极界面。为了填补这一空白,我们通过利用Operando数字图像相关性,阻抗光谱和冷冻X射线光电学光谱镜来报告有关磷酸锂,LifePo 4阴极的动态变形。Lifepo 4阴极在LIPF 6,LICLO 4或LITFSI中循环。在第一个周期之后,锂离子插入导致电化学菌株与(DIS)递送的状态之间几乎线性相关,而与电解质化学无关。但是,在LIPF 6中的第一个电荷 - 含有电解质的第一个电荷期间,在阳极电流上升开始时有明显的不可逆的正应变演化,并且在4.0V左右的电流衰减。阻抗研究表明,在相同的潜在窗口中表面阻力的增加,表明在阴极上形成了CEI层。CEI层的化学性质的特征是X射线光电子光谱。LIF,在第一个充电期间,电压以高于4.0 V的电压出现。我们的方法为阴极电极上CEI层的形成机理提供了新的见解,这对于为高性能电池开发可靠的阴极和电解质化学物质至关重要。