可充电金属阳极电池是有希望的锂离子电池开发。然而,金属阳极与电解质的高反应性导致形成固体 - 电解质相间(SEI)。电解质设计是控制金属阳极电池中SEI组成的关键手柄,但是我们对电解质(特别是阳离子的第一个协调球)的理解是有限的。在本文中,对离子溶剂化和络合技术的研究将其带入电池电解质的背景下。在一组偏光溶剂中,总结了文献中的相关数据,并补充了溶液(δsol H)的焓(δsol H)和转移(δTrh)测量的焓(δTrh)测量。通过考虑溶剂和阴离子特性,尤其是溶剂捐赠和阴离子的大小,观察到的趋势是合理化的。使用一组示例电解质来实现LI +配位球,等温滴定量热法(ITC)和电位滴定(PT),以探测Li +协调复杂的较弱的溶剂的热力学演化,该溶剂是由弱溶剂的较弱的溶剂所取代的,该溶剂是由强度溶剂替代的。拉曼光谱法用于确认溶剂位移是按预期发生的,并且研究了阴离子对ITC测量的影响。开发了一个统计结合模型,该模型符合实验滴定数据,以提取Gibbs自由能(ΔG),焓(ΔH)和熵(ΔS)的平均变化。使用此方法对EC的优先溶剂化趋势进行了量化的EC:DMC和EC:PC电解质,并与其他工人观察到的偏好进行了比较。本论文为将来的有关更复杂的电池电解质配位环境的热力学研究及其与SEI组成的联系提供了一个框架。
摘要通过拉曼光谱,差异扫描量热法,温度调节的差异扫描量热法,介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质是从二甲基二甲基丙烯酸酯的热固化的,而液体电解质由基于乙基 - 咪唑酰胺阳离子[C 2 HIM]和BIS(Trifluoromomethanesulfonyl)的原始离子液体组成,并与Imide [Tfluoromomethanesulfonyl)Imide [Tfsi] Anion annion annion annion,dopsed。我们报告说,受关节的液相具有以下特征:(i)明显降低的结晶度; (ii)更广泛的放松时间分布; (iii)降低介电强度; (iv)在液体到玻璃过渡温度(T g)处的合作长度降低; (v)上速度的局部T G相关离子动力学。The latter is indicative of weak interfacial interactions between the two nanophases and a strong geometrical confinement effect, which dictates both the ion dynamics and the coupled structural relaxation, hence lowering T g by about 4 K. We also find that at room temperature, the ionic conductivity of the structural electrolyte achieves a value of 0.13 mS/cm, one decade lower than the corresponding bulk electrolyte.三个移动离子(IM +,TFSI - 和LI +)有助于测得的离子电导率,隐含地降低了LI +转移数。此外,我们报告了研究的固体聚合物电解质表现出将机械负载转移到结构电池中碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化
摘要:电池在实现零排放目标以及向更循环经济的过渡方面起着关键作用。确保电池安全是制造商和消费者的重中之重,因此是一个积极的研究主题。金属氧化物纳米结构具有独特的特性,使它们在电池安全性应用中具有很高的希望。在这项研究中,我们研究了半导体金属氧化物的气体感应能力,用于检测由常见电池组件(例如溶剂,盐或其脱气产物)产生的蒸气。我们的主要目标是开发能够早日检测到通过电池故障产生的常见蒸气以防止爆炸和进一步的安全危害的传感器。Typical electrolyte components and degassing products for the Li-ion, Li − S, or solid-state batteries that were investigated in this study include 1,3-dioxololane (C 3 H 6 O 2 DOL), 1,2-dimethoxyethane (C 4 H 10 O 2 DME), ethylene carbonate (C 3 H 4 O 3 EC), dimethyl carbonate (C 4 H 10 O 2 DMC),锂双锂(三氟甲磺酰基)(litfsi),硝酸锂(lino 3)盐中的DME和DME混合物中的盐,六氟磷酸锂(LIPF 6),氮基因二氧化物(No 2)和磷酸磷酸磷酸盐(No 2),氮(NO 2)。我们的传感平台基于由TIO 2(111)/CUO(1̅11)/CU 2 O(111)和CuO(1̅11)/Cu 2 O(111)组成的三元和二进制异质结构,分别具有各种CUO层(10、30和50 nm)。我们已经使用扫描电子显微镜(SEM),能量分散性X射线光谱(EDX),微拉曼光谱和紫外线 - 可见(UV- VIS)光谱分析了这些结构。我们发现,传感器可靠地检测到DME C 4 H 10 O 2蒸气,浓度为1000 ppm,气体响应为136%,浓度低至1、5和10 ppm,响应值分别为7、23和30%。我们的设备可以用作2英寸1传感器,在低工作温度下充当温度传感器,在高于200°C的温度下充当气体传感器。密度功能理论计算还被用来研究由电池溶剂或其脱气产品以及水的蒸汽产生的蒸气的吸附,以调查湿度的影响。PF 5和C 4 H 10 O 2显示出最放热的分子相互作用,这与我们的气体反应研究一致。我们的结果表明,湿度不会影响传感器的性能,这对于在锂离子电池恶劣条件下早期发现热失控至关重要。我们表明,我们的半导体金属氧化物传感器可以检测到具有高精度的电池溶剂和脱气产品产生的蒸气,并且可以用作高性能电池安全传感器,以防止在电池故障中爆炸。尽管传感器独立于电池类型而工作,但此处提供的工作特别值得监视固态电池,因为DOL是通常用于此类电池中的溶剂。关键字:CUO,TIO 2,异质结构,气体传感器,电池安全性,2合1传感器
