Guåhan(关岛)是西太平洋玛丽安娜群岛的一部分,拥有近四千年的考古记录。 在这篇有关LIDAR在Guåhan进行考古调查的开创性学术论文中,我们确定可以在视觉上检测到哪些已知地点,以探索在这种情况下LIDAR的有效性。 使用高分辨率2020机载激龙检查了拿铁,西班牙和现代时期的几种考古遗址类型和特征。 我们生成了最常用的数字高程模型(DEM),即数字地形模型(DTM)和数字表面模型(DSMS),并将其视为山顶。 LIDAR被证明可有效地识别所有现代地点以及大多数拿铁咖啡和西班牙时期的地点,尽管某些功能仍然晦涩难懂。 在Guåhan上使用LiDar的主要挑战和局限性是植被,现场大小和视觉歧义。 这项研究使用了常规的激光衍生物,但它通过在未来应用更复杂的激光雷达处理技术来揭示了寻找更多考古遗址的潜力。 LIDAR的好处引起了当地社区的极大兴趣,尤其是土著Chamoru,对非毁灭性方式感兴趣,以协助其文化遗产管理。Guåhan(关岛)是西太平洋玛丽安娜群岛的一部分,拥有近四千年的考古记录。在这篇有关LIDAR在Guåhan进行考古调查的开创性学术论文中,我们确定可以在视觉上检测到哪些已知地点,以探索在这种情况下LIDAR的有效性。使用高分辨率2020机载激龙检查了拿铁,西班牙和现代时期的几种考古遗址类型和特征。我们生成了最常用的数字高程模型(DEM),即数字地形模型(DTM)和数字表面模型(DSMS),并将其视为山顶。LIDAR被证明可有效地识别所有现代地点以及大多数拿铁咖啡和西班牙时期的地点,尽管某些功能仍然晦涩难懂。在Guåhan上使用LiDar的主要挑战和局限性是植被,现场大小和视觉歧义。这项研究使用了常规的激光衍生物,但它通过在未来应用更复杂的激光雷达处理技术来揭示了寻找更多考古遗址的潜力。LIDAR的好处引起了当地社区的极大兴趣,尤其是土著Chamoru,对非毁灭性方式感兴趣,以协助其文化遗产管理。
准确的映射和本地化(Dill&Uijt de Haag,2016年)对于自动驾驶汽车等自主系统(Advs; Huang等,2019)和室内移动机器人技术(Hess等,2016)都是重要的。付出了巨大的努力,致力于使用3D光检测和范围(Lidar; Hess等,2016)传感器的稳健性与基于视觉的SLAM方法相比,使用3D光检测和范围(Lidar; Hess等,2016)传感器实现了准确的同时定位和映射(SLAM)(SLAM)(Qin等,2018,2018)。基于视觉的大满贯基于被动传感器(例如相机)可能对照明和观点变化敏感。相反,像3D激光雷达这样的主动传感器可以为周围环境提供距离测量,而环境不变。出色的鲁棒性和精确度使3D LiDAR成为用于大规模映射和本地化的必不可少的传感器。
摘要 — 演示了一种用于大气二氧化碳 (CO 2 ) 集成路径差分吸收激光雷达的磷化铟光子集成电路 (PIC)。PIC 由两个宽调谐采样光栅分布布拉格反射器 (SGDBR) 激光器、定向耦合器、相位调制器、光电二极管和半导体光放大器 (SOA) 组成。一个 SGDBR 激光器(前导)使用片上相位调制器和台式 CO 2 Herriott 参考单元锁定在 1572.335 nm 处的吸收线中心。另一个 SGDBR 激光器(跟随器)在 1572.335 nm 附近以 ± 15 GHz 的频率步进,以扫描目标 CO 2 吸收线。跟随器激光器通过光学锁相环偏移锁定到前导激光器。跟随器激光器后的 SOA 在每个频率步进处产生一个脉冲,以创建对目标 CO 2 吸收线进行采样的脉冲序列。根据目标性能要求对 PIC 组件和子系统进行特性描述和评估。与自由运行相比,引导激光器在锁定状态下的频率稳定性标准偏差提高了 236 倍,而与引导激光器相比,在 2 GHz 编程偏移下,跟随激光器的频率稳定性标准偏差为 37.6 KHz。
摘要:我们报告了一种新型空间激光雷达的开发,该雷达专为执行小型行星体任务而设计,用于地形测绘和样本采集或着陆支持。该仪器设计为具有宽动态范围,并针对不同任务阶段提供多种操作模式。激光发射器由光纤激光器组成,该激光器通过归零伪噪声 (RZPN) 代码进行强度调制。接收器通过将检测到的信号与 RZPN 内核关联来检测编码脉冲序列。与常规伪噪声 (PN) 激光雷达不同,RZPN 内核在激光发射窗口外设置为零,从而消除了接收器积分时间内的大部分背景噪声。该技术允许使用低峰值功率但高脉冲率的激光器(例如光纤激光器)进行长距离测距而不会产生混叠。激光功率和探测器的内部增益均可调整,以提供宽测量动态范围。激光调制代码模式也可以在轨道上重新配置,以优化针对不同测量环境的测量。接收器采用多像素线性模式光子计数 HgCdTe 雪崩光电二极管 (APD) 阵列,在近红外至中红外波长范围内具有近量子极限灵敏度,许多光纤激光器和二极管激光器都在此波长范围内工作。该仪器采用模块化和多功能设计,主要采用光通信行业开发的组件构建。
LIDAR是使用发射光的反射特性的距离和速度测量设备。太空行业正在使用LiDar在着陆任务之前扫描行星表面,以测量航天器和许多其他应用之间的距离。具有最敏感的检测器对于测量长距离,尤其是在空间应用中至关重要。首先使用的LIDAR硅光电塑料正在市场上销售,例如光电倍增管等其他探测器。但是,到目前为止,尚无专用电子产品。LIDAR读出的主要读取要求是一个极好的计时分辨率和2NS双峰分离。市场上的ASIC都没有这样的快速响应。WEEROC设计了一种激光雷达专用的多渠道读取芯片原型,将我们的研发集中在带宽上,并快速返回基线以满足激光雷达的要求。
Ouster 和 Benchmark 的合作还使团队能够控制预算并实现项目里程碑。Benchmark 利用其全球供应链寻找低成本组件。Ouster 决定使用 Benchmark 的泰国工厂,该地区以其光子学专业知识和低成本、高技能劳动力而闻名,这为 Ouster 带来了许多优势。现在,随着全面生产逐渐展开,Ouster 客户拥有了实现全自动驾驶汽车和其他系统所需的设备技术。
摘要 在星载雷达观测海洋的各种挑战中,以下两个问题可能更为突出:动态分辨率不足和垂直穿透效果不佳。未来十年,雷达干涉测量和海洋激光雷达技术可能会取得两项备受期待的突破,预计它们将对亚中尺度分辨和深度分辨的海洋观测做出重大贡献。计划中的“观澜”科学任务包括双频(Ku 和 Ka)干涉测高仪(IA)和近天底指向海洋激光雷达(OL)。星载主动 OL 将确保更深的穿透深度和全时探测,从而对地下海洋的光学特性进行分层表征。OL 和双频(Ku 和 Ka)干涉测高系统的同时运行将使我们更好地了解大气和海气界面的贡献,从而大大减少两个传感器的误差预算。 OL有效载荷有望部分揭示真光层中垂直间隔10米的海洋食物链和生态系统,在动态和生物光学上向海洋混合层迈出重要一步。
摘要。随着计算、传感和车辆电子技术的进步,自动驾驶汽车正在成为现实。对于自动驾驶,雷达、激光雷达和视觉传感器等环境感知传感器作为车辆的眼睛发挥着核心作用;因此,它们的可靠性不容妥协。在本研究中,我们提出了一种通过中继攻击进行欺骗,它不仅可以在激光雷达输出中引起错觉,还可以使错觉看起来比欺骗设备的位置更近。在最近的一项研究中,前一种攻击被证明是有效的,但后一种攻击从未被证明过。此外,我们提出了一种针对激光雷达的新型饱和攻击,它可以完全使激光雷达无法感知某个方向。这两种方法的有效性都已通过 Velodyne 的 VLP-16 实验验证。
沃尔沃汽车和芬兰高端增强现实耳机制造商 Varjo 共同创建了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车技术基金决定投资 Varjo,这将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,这些功能对驾驶员和汽车传感器来说都是真实的,用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合或虚拟现实。它使用高清摄像头并实现混合现实。这使设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在它们问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构佩戴耳机驾驶真实汽车,测试通过增强现实在现实环境中实施的虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。
沃尔沃汽车和芬兰高端增强现实耳机制造商 Varjo 创造了一种混合现实方法来评估原型、设计和主动安全技术。沃尔沃汽车科技基金决定投资 Varjo,将进一步加强双方的合作。沃尔沃和 Varjo 已经实现了佩戴混合现实耳机驾驶真实汽车,无缝添加虚拟元素或完整功能,让驾驶员和汽车传感器都感觉非常真实,以用于开发目的。Varjo XR-1 耳机以高分辨率提供逼真的混合或虚拟现实。它使用高清摄像头并实现混合现实。这使得设计师和工程师能够驾驶未来的汽车并在模拟环境中评估所有功能,而这些功能早在汽车问世多年前就已存在。安全专家可以在沃尔沃位于瑞典的研究机构中戴着耳机驾驶真正的汽车,通过增强现实技术在现实环境中测试虚拟主动安全系统。XR-1 中嵌入的眼动追踪技术可以评估驾驶员如何使用新功能以及他们是否分心。