在非相对论量子系统中,利布-罗宾逊定理 [1-2] 规定了一个新出现的速度限制 v,在幺正演化下建立了局部性,并限制了执行有用量子任务所需的时间。在本次演讲中,我将介绍我们的工作 [3],即将利布-罗宾逊定理扩展到具有测量和自适应反馈的量子动力学。与测量可以任意违反空间局部性的预期相反,我们发现量子信息的速度最多可以提高 (M+1) 倍,前提是已知 M 个局部测量的结果;即使经典通信是即时的,这也是如此。我们的界限是渐近最优的,并且被现有的基于测量的协议所饱和 [4]。我们严格限制了量子计算、纠错、隐形传态以及从短程纠缠初始状态生成纠缠资源状态(Bell、GHZ、Dicke、W 和自旋压缩状态)的资源要求。我们的研究结果限制了使用测量和主动反馈来加速量子信息处理,并限制了大量已提出的量子技术的可扩展性。参考文献:[1] Lieb 和 Robinson,“量子自旋系统的有限群速度”,Comm. Math. Phys. 28, 251 (1972)。[2] Chen, Lucas 和 Yin,“多体量子动力学中的速度限制和局部性”,arXiv:2303.07386。[3] Friedman, Yin, Hong 和 Lucas,“带测量的量子动力学中的局部性和误差校正”,arXiv:2206.09929。[4] Briegel, Dur, Cirac 和 Zoller,“量子中继器:不完美局部操作在量子通信中的作用”,Phys. Rev. Lett. 81, 5932 (1998)。
请为以下人员的福祉祈祷:Elliot Adkisson III 中士、Jason Alexander、Matthew Alexander、Michael Allen 中士、Jason Annese 下士、Daniel Bilgic 一等兵、Joseph Bilgic 一等兵、Josh Blassman、Justin Beck 中尉、Bryan Bolt III、Stephen Bray III 下士、Jack Brandt 中尉、Evan Brown MIDN USNA、Denis Brown 上校、Ryan Brunk 少校、Matthew Buyske 上尉、Matthew Chybinski 少校、John Ciacci 中士、Michael Costello、Zachary Crawford 中士、Gwen Daley SR、Joseph DeStefano、Josh Dikmak、Christopher DiNote 上校、John Dixon、Silvio Duplechan Jr 下士、Mohamed Embaby 中士、Andrew Ensign 列兵、Thomas Farley、Luca Franchi、Gerard Gagnon 上校、Lucas Goergen 中士、Michael Goncalves 下士、Evan Grabowski 专家。 Andrew Guattari、LtCol John Harding、LtCol Bill Harkins、Jared Hatley、SR Hannah Hayes、James Hayes、Rick Heipertz、Spc William Hornung、Sgt Jeffrey Jayne、PFC David Johnson、Matt Kotowski、PO2 Dixon Kehoe、PO3 Maxx Kehoe、SSgt Kris Knaup、Brian Kohler、Sgt Jonathan Krall、少尉 Trevor Kuroczka、上尉 Scott Lafferty、中尉 John Paul Lamorte、少尉 Jarrod LaRosa、A1C 级 Daniel Little、SSG Stephen MacCrory、William Mace、Bryan Marines、Cayden Martin、列兵。一等兵马修·马辛斯 (Matthew Marthins)、下士安东尼·马斯特朗杰洛 (Anthony Mastrangelo)、一等兵马修·马斯特朗杰洛 (Matthew Mastrangelo)、上尉米歇尔·马修斯 (Michelle Mathews)、中尉谢恩·毛罗 (Shane Mauro)、布伦登·麦基特里克 (Brenden McKittrick)、中士布莱恩·麦克纳利 (Brian McNally)、中士卢克·麦克纳利 (Luke McNally)、上尉贾里德·米勒 (Jared Miller)、高级军士长理查德·米勒三世 (Richard Miller III)、下士蒂莫西·米勒 (Timothy Miller)、中尉玛吉·蒙特桑蒂-鲍恩 (Maggie Montesanti-Bowen)、下士莎妮·诺恩 (Shannyn Noone)、A1C 安东尼·奥兰多 (Anthony Orlando Jr)、中士迈克尔·彼得森 (Michael Peterson)、鲍勃·波勒 (Bob Poller)、耳鼻喉科医师尼古拉斯·里奇 (Nicholas Ricci)、高级军士长金伯利·里波利 (Kimberly Ripoli)、道格·萨克特 (Doug Sackett)、克林顿·谢布纳 (Clinton Scheibner)、指挥官安德鲁·施瓦尔本伯格 (Andrew Schwalbenberg)、丹·沙纳汉 (Dan Shanahan) 上校、一等兵约瑟夫·塞勒 (Joseph Seller)、莫利纳·森普尔 (Molina Semple)、CW4 妮可·斯普罗瑟 (Nicole Sproesser)、中尉格雷戈里·斯威夫特 (Gregory Swift)、达拉斯·索普 (Dallas Thorp)、列兵杰克·威瑟姆 (Jake Witham)、卢克·威廉姆斯 (Luke Williams)、特里斯坦·伍德 (Tristan Wood)、高级军士长贾里德·扎瓦特 (Jaried Zavatter)、罗伯特·齐林斯基 (Robert Zielinski)、列兵。 Ian S. Evans 和 Shaun T. Lieb 上尉 EOD、Jack M. Tarzy、MIDN USN
年度讲道格言 哥林多前书 16:14 31.01.24 “你真的知道我有多爱你吗?”“嗯——食物味道好极了——是的,我也用爱烹饪了它。”“爱——不只是一个词!”“不——爱——是言语和行为!”“是你的爱给了我稳定!”正是这种爱使一切跌倒和站立,保罗今天特别想向我们灌输这种爱,以及当时在公元 54 年在哥林多的会众灌输这种爱。在传教的旅途中,保罗见识了很多,了解了不同的文化和宗教,接触了一些已经认识耶稣的人,或者质疑他的人,甚至有意识地远离他的人。保罗不仅目睹了不满、冲突、动乱和不公,他还亲身感受到并经历了这些。这使得他更有必要陪伴自己所了解和建立的社区,哪怕距离很远。那时,人们仍然欣赏手写老式信件的价值。 尽管存在各种动乱和文化差异,但他在旅途中意识到了一件事 - 因此他在《哥林多前书》中写道:“无论做什么,都要怀着爱心去做!”因为爱是温柔和耐心的,它宽恕并寻找一条可行的道路。爱给人理解、倾听、怜悯,并能宽恕。保罗并没有把这句话放在信的中间,不,他故意以此结束这封信——以便给我们一个展望、一个鼓励,也为我们的旅程提供一个呼吁。无论做什么,都要满怀爱意地去做——我们不会这么快就忘记这句话,因为这是我们今年的座右铭。而这样做会一次又一次地提醒我们,当我们彼此相伴、彼此帮助时,有了爱,事情就会变得容易得多。我们能够从上帝的爱中获得生命,上帝在我们心中种下了爱的种子。保罗的话想要提醒我们爱的三位一体:我们从上帝对我们的关怀之爱中汲取力量。
在过去的几十年中,空腔量子电动力学领域的进步以及电路量子电动力学为强烈和共计耦合到光模式的物质系统铺平了道路。这些实验突破使实现和研究范式理论模型(如Rabi,Tavis-Cummings和Dicke模型)在实验室中具有强烈的相互作用[4-11]。使用这些工具,一个基本问题是光与物质之间的相互作用如何相互影响,改变了分离的(潜在复杂)单个部分的特性,例如可观察结果,局部相互作用或相变的位置[12-22]。范式的光丝系统之一是Dicke模型,在光和物质部分上的设置最少[23,24]。该模型由n个单个自旋-1 / 2颗粒组成,这些粒子单独耦合到单个空腔模式。hepp和lieb显示了热力学极限n→∞可以通过Bogoliubov转换来分析求解,并具有从正常到超级阶段的二阶相变,其基态下具有非变化的光子密度[24]。虽然DICKE模型的一部分是由任意数量的旋转组成的,但在没有光结合相互作用的情况下,它会分解为非相互作用的问题,因为局部自由度仅通过腔体耦合,从而使其易于解决。一个典型的例子是Dicke-asision模型,其中最近的邻居旋转之间存在额外的ISININ相互作用。首先,在第二节。sec。sec。To make the composite system more interesting, various generalizations for the Dicke model were proposed and discussed, like more complex local spin structures [ 25 ] , multi-mode cavities [ 24 , 26 , 27 ] , non-Hermitian generalizations [ 28 ] , open systems [ 29 , 30 ] , altered light- matter interactions [ 31 , 32 ] , non-equilibrium systems [ 33 ] , and added matter-matter interac- tions between the spins [ 2 , 34,35]。使用均值场和自由度自由度的经典近似,Zhang等人。在物质部分[2]中找到了包括抗铁磁相的抗铁磁相互作用的丰富相图,其中包括抗铁磁相和顺磁相[2]。然而,使用定量数值技术,在位置以及1D中的顺序中发现了相变的偏差[1,36]。在这项工作中,我们通过考虑对物质部分的更具概括的设置来详细说明,包括长距离跳跃和关联过程,并将其耦合到单个光模式。这使我们能够研究光 - 物质和物质 - 耦合引起的相关性与效果之间的相互作用。将自己限制在与消失的光质相互作用的情况下,我们通过将其映射到有效的dicke模型来建立了该模型低能部分的分析解决方案。这使我们能够在分析的非抗抑制阶段研究这种广义的dicke模型的低覆兴激励,包括缝隙的截止,可能诱导二阶相变。本文的结构如下。2我们介绍了一般框架工作,包括广义模型和推导有效DICKE模型的先决条件。后者是在亚基中完成的。2.2和2.3,首先给出一些物理直觉,如何解决系统,然后在操作员级别上进行一般推导。3,我们将一般发现应用于Dicke-asising模型,作为示例性情况。我们比较了在热力学极限中获得的结果,与有限系统上的精确对角线化(ED)和串联扩展方法PCST ++ [3]相比,以增强有效模型的有效性。sec。 4我们得出结论,并为潜在的研究方向提供前景。sec。4我们得出结论,并为潜在的研究方向提供前景。