摘要 人工智能 (AI) 的快速发展给利用 AI 在工作场所进行人机协作所需的教育和劳动力技能带来了重大挑战。随着人工智能继续重塑行业和就业市场,定义如何在终身学习中考虑人工智能素养的需求变得越来越重要 (Cetindamar 等人,2022 年;Laupichler 等人,2022 年;Romero 等人,2023 年)。与任何新技术一样,人工智能既是希望的主题,也是恐惧的主题,它今天所包含的内容带来了重大挑战 (Cugurullo & Acheampong,2023 年;Villani 等人,2018 年)。它也对我们自己的人性提出了深刻的问题。机器会超越设计它的人类的智慧吗?所谓的人工智能和我们的人类智能之间会是什么关系?如何规范人机协作,以服务于可持续发展目标 (SDG)?本文从计算思维、批判性思维和创造性能力的角度回顾了人工智能时代终身学习的挑战,强调了对组织管理和领导的影响。
实施可再生能源产生的广泛方法,[1]和大规模采用电动汽车。[2]这种绿色过渡只有在开发高效且环保的储能系统时才有可能。[1-3]作为最突出和通用的能源存储系统,电池被认为是以环境和社会经济上可疑的方式存储/传递按需功率的至关重要的齿轮。[4]理想情况下,可持续的能源存储设备应提供较大的能力,具有良好的利率能力,具有较长的运行寿命,最重要的是,依赖于无毒和非关键材料。[5–7]这些严格的要求位移锂离子蝙蝠(LIB)是真正绿色电池的首选选择。[5]当前的LIB在电解质(六氟磷酸锂,碳酸盐酯)中使用有毒和易燃化学物质,以及欧盟列出的元素为关键原料(CRMS),包括钴,锂或石墨。[8,9]除了在玻利维亚,阿根廷,智利,澳大利亚和刚果民主共和国的高供应风险外,CRM的处置和随后的海洋/垃圾填埋场都严重威胁动物和 div>
为实现 500 万吨绿色氢气产量的目标,印度到 2030 年将需要 125 吉瓦的可再生能源。这一需求主要通过太阳能、风能和抽水蓄能来满足。为实现这一目标,印度正全力以赴,到 2030 年将可再生能源安装量提高到 500 吉瓦。印度已经启动了多轮海上风电和抽水蓄能项目招标。由于 SECI 采取措施加速印度太阳能的发展,太阳能发电厂在过去 10 年中发展势头强劲,且呈上升趋势。甚至人们也在考虑使用聚光太阳能发电 (CSP),以尽可能降低发电运营成本来增加产能。过去几个月,Tata、JSW、Torrent 等公司宣布了多个抽水蓄能项目。
可以将多种农作物知识的缩放基因型与表型相关性进行的管道用于传统的育种方法或基因组编辑目标和特质的基因组编辑 - 通过将信息转换为知识
本研究考察了企业生命周期在战略管理会计(SMA)信息使用与竞争战略选择之间的调节作用。本研究利用偏最小二乘结构方程模型(PLS-SEM)证明了SMA信息使用对竞争战略选择具有正向影响,并通过偏最小二乘多组分析(PLS-MGA)比较了不同生命周期阶段SMA信息使用与竞争战略选择关系的差异。我们发现,与成熟期企业相比,成长期企业的产品相关信息使用有助于差异化战略的选择。此外,与成长期企业相比,成熟期企业利用产品相关信息和竞争对手相关信息帮助管理者选择成本领先战略。本研究阐明了企业生命周期、SMA信息使用与竞争战略选择之间的关系,为管理者提供了更准确的战略决策建议,并为企业生命周期研究提供了一种方法,即利用PLS-MGA比较不同生命周期阶段变量关系的路径差异。
电力电子器件和模块的寿命建模有着悠久的研究历史。两大主要研究方向是数据驱动方法和基于模型的方法。数据驱动方法使用机器学习从经验数据中训练寿命模型。它是一种纯数据挖掘技术,不考虑故障机制。相比之下,基于模型的方法旨在研究故障机制,以便在考虑故障机制的情况下建立寿命模型。虽然数据驱动方法如今由于新一波人工智能的兴起而变得越来越流行,但基于模型的方法一直是经典方法并不断发展。我们的工作属于基于模型的方法。下面,我们将简要回顾主要的基于模型的方法。
方法此机器学习模型是在Google Colab中编码的,我们使用了编程语言Python。我们使用诸如Pandas,KneighBorsRegressor和Train_test_split之类的库进行数据操纵,构建和培训机器学习模型,以及对模型的测试和验证。KNN模型使用7个邻居来预测测试数据集目标。将培训和测试数据集加载到熊猫数据框架上进行数据操作。然后,我们通过将功能与目标分离来分开训练数据集。培训数据集被拆分,其中80%的数据用于培训,其余数据用于验证。我们在培训数据集上训练KNN模型。然后该模型预测目标。我们使用均方根误差来评估预测。
锂离子电池广泛用于各种应用中,包括便携式电子设备,电动汽车和可再生能源存储系统。准确估计这些电池的剩余使用寿命对于确保其最佳性能,防止意外故障和降低维护成本至关重要。在本文中,我们对估计锂离子电池剩余使用寿命的现有方法进行了全面综述,包括数据驱动的方法,基于物理的模型和混合方法。我们还提出了一种基于机器学习技术的新方法,以准确预测锂离子电池的剩余使用寿命。我们的方法利用各种电池性能参数(包括电压,电流和温度)来训练一个可以准确估算电池剩余使用寿命的预测模型。我们在锂离子电池周期的数据集上评估了方法的性能,并将其与其他最先进的方法进行比较。结果证明了我们提出的方法在准确估计锂离子电池的剩余使用寿命方面的有效性。
Michelle Chen 博士是 Insilico Medicine 的首席商务官。她在生物制药和技术行业拥有 20 多年的丰富经验。在加入 Insilico Medicine 之前,她曾担任药明生物的企业发展和发现业务发展高级副总裁,领导了多项并购和许可交易,推动了与外部生物制药合作伙伴的战略合作伙伴关系和合资企业,在欧洲成立了一家新公司,并在美国和欧洲建立了投资者关系。作为一名生物技术高管,Chen 博士曾在罗氏、默克和 BioMarin 等顶级制药公司以及生物技术和技术公司工作,担任过业务和企业发展、产品营销和研发等职务,取得了辉煌的成功。她拥有华盛顿大学生物化学博士学位,在加州大学旧金山分校从事博士后工作,并在斯坦福大学接受过生物信息学培训。