锂离子电池广泛用于各种应用中,包括便携式电子设备,电动汽车和可再生能源存储系统。准确估计这些电池的剩余使用寿命对于确保其最佳性能,防止意外故障和降低维护成本至关重要。在本文中,我们对估计锂离子电池剩余使用寿命的现有方法进行了全面综述,包括数据驱动的方法,基于物理的模型和混合方法。我们还提出了一种基于机器学习技术的新方法,以准确预测锂离子电池的剩余使用寿命。我们的方法利用各种电池性能参数(包括电压,电流和温度)来训练一个可以准确估算电池剩余使用寿命的预测模型。我们在锂离子电池周期的数据集上评估了方法的性能,并将其与其他最先进的方法进行比较。结果证明了我们提出的方法在准确估计锂离子电池的剩余使用寿命方面的有效性。
为实现 500 万吨绿色氢气产量的目标,印度到 2030 年将需要 125 吉瓦的可再生能源。这一需求主要通过太阳能、风能和抽水蓄能来满足。为实现这一目标,印度正全力以赴,到 2030 年将可再生能源安装量提高到 500 吉瓦。印度已经启动了多轮海上风电和抽水蓄能项目招标。由于 SECI 采取措施加速印度太阳能的发展,太阳能发电厂在过去 10 年中发展势头强劲,且呈上升趋势。甚至人们也在考虑使用聚光太阳能发电 (CSP),以尽可能降低发电运营成本来增加产能。过去几个月,Tata、JSW、Torrent 等公司宣布了多个抽水蓄能项目。
引用Chang,Huibin,Jie Xu,Luke A. Macqueen,Zeynep Aytac,Michael M. Peters,John F. Zimmerman,Tao Xu,Philip Demokritou和Kevin Kit Parker。2022。“用可生物降解的抗菌pullulan纤维进行高通量涂层延长保质期并减少鳄梨模型中的体重减轻。”自然食品3(6):428–36。
电力电子器件和模块的寿命建模有着悠久的研究历史。两大主要研究方向是数据驱动方法和基于模型的方法。数据驱动方法使用机器学习从经验数据中训练寿命模型。它是一种纯数据挖掘技术,不考虑故障机制。相比之下,基于模型的方法旨在研究故障机制,以便在考虑故障机制的情况下建立寿命模型。虽然数据驱动方法如今由于新一波人工智能的兴起而变得越来越流行,但基于模型的方法一直是经典方法并不断发展。我们的工作属于基于模型的方法。下面,我们将简要回顾主要的基于模型的方法。
摘要:在电池储能系统(BESS)中部署的锂离子电池(LIB)可以降低发电部门的碳强度并改善环境可持续性。这项研究的目的是使用生命周期评估(LCA)建模,使用来自同行评审的文献以及公共和私人资源的数据,以量化钴的供应链沿供应链沿供应链量化,这是许多类型的LIB中的关键组成部分。该研究试图了解在生命周期阶段的位置,环境影响最高,从而强调了可以提高自由链供应链可持续性的行动。该LCA的系统边界是摇篮到门的。影响评估遵循食谱中点(H)2016。我们假设一个30年的建模期,并在第3年,第7和14年结束时进行了增强,然后在第21年完全替换。在场景中使用了三个炼油厂(中国,加拿大和芬兰),一系列矿石等级(NMC111,NMC532,NMC532,NMC622,NMC811和NCA),以更好地估计其对生命周期的影响。的见解是,根据与矿石等级的逆权法关系,几乎所有途径的影响都会增加;在中国以外的精炼可以将全球变暖潜力(GWP)降低超过12%; GWP对NCA和其他NMC电池化学中使用的钴的影响分别比NMC111低63%和45-74%。按单分析进行分析,海洋和淡水生态毒性是突出的。对于0.3%的矿石等级,加拿大路线的GWP值以58%至65%的速度降低,而芬兰路线的GWP值则下降了71%至76%。统计分析表明,电池中的钴含量是最高的预测因子(R 2 = 0.988),其次是矿石等级(R 2 = 0.966)和精炼位置(R 2 = 0.766),当分别评估相关性时。这里提出的结果指向可以减少环境负担的地区,因此它们有助于政策和投资决策者。
Abstract ..................................................................................................................................... II
印度的电动汽车革命正在加速发展,该国电动汽车的数量正在快速增长。电动汽车数量的增长也意味着废弃电池数量的增加。充分利用昂贵的电池至关重要。为此,该行业应专注于翻新和回收废弃的电动汽车电池,以利用剩余的稀有材料并减少残余废物。由于电动汽车在印度的普及仍处于起步阶段,因此有机会为废旧电池创建一个翻新生态系统。二次电池为固定存储应用提供了可靠、廉价和高效的解决方案,并可能在很大程度上解决印度的能源危机。因此,本期简报探讨了在印度环境下将有益的旧电动汽车电池的二次应用。它进一步提出了可行的建议,以使印度成为电动汽车电池二次利用的主流。
Lamb Meal, Chicken Meal, Oatmeal, Fresh Chicken, Whole Grain Barley, Whole Brown Rice, Millet, Chicken Fat (Preserved With Mixed Tocopherols, a Natural Source of Vitamin E), Salmon Meal (Preserved with Vitamin E and Rosemary Extract), Green Peas, Whole Eggs, Chicken Liver, Potassium Chloride, Salmon Oil (Source of DHA), Quinoa, Flaxseed, Lecithin, DL蛋氨酸,菊苣根(菊粉),维生素A,维生素D3,维生素E,烟酸蛋白,维生素C,肌醇,pantotol,D-钙硫酸盐,维生素BL,核糖叶艾比,β-胡萝卜素,维生素B6,维生素B6,叶黄素,生物蛋白B12,蛋白蛋白蛋白蛋白蛋白蛋白蛋白,蛋白蛋白蛋白质,质子蛋白蛋白质,柔韧性蛋白质,蛋白蛋白,蛋白蛋白,蛋白蛋白,蛋白质,蛋白蛋白,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白质,蛋白蛋白,蛋白质,蛋白质碘酸钙,硒酵母,番茄(番茄的天然来源),葡萄糖胺,胆碱氯化物,丝兰schidigera提取物,l-肉碱,曼南纳 - 寡糖,胡萝卜,苹果,苹果,苹果,甜食,蓝莓,小溪,绿色糖果(绿色糖果蛋白酶)(绿色糖果蛋白酶)(绿色糖浆蛋白酶(绿色糖)(嗜酸菌,乳杆菌,肠球菌,粪肠球菌,双杆菌嗜热杆菌),百里香,卡西亚,茴香,茴香,辣根,杜松,杜松,姜,姜,Yarrow,Rosemary提取物。
摘要 - 近年来,与基于标准头皮的脑电图相比,近年来,脑脑电脑术(EEG)记录了质量相似的信号,并且已经报道了客观听力阈值估计的临床应用。现有设备仍然缺乏重要的效果。实际上,大多数可用解决方案都是基于湿电极,需要连接到外部采集平台,或者不提供车载处理功能。在这里,我们克服了所有这些局限性,并基于干电极电极呈现一个耳EEG系统,其中包括直接在耳芽中的所有采集,处理和连接电子设备。听筒配备了一个超低功率模拟前端,用于模数转换,低功率MEMS麦克风,低功率惯性测量单元以及ARM Cortex-M4基于MART Cortex-M4的微控制器启用板上的船上处理和蓝牙低能能连接。系统可以直接流式传输RAW EEG数据或直接进行数据处理。我们通过分析其检测大脑对外部听觉刺激的响应的能力来测试该设备,分别实现4和1.3 MW的数据流或船上处理。后者允许在PR44锌空气电池上进行600小时的操作。据我们所知,这是执行机载处理的第一个无线且完全独立的耳朵系统,所有这些都嵌入了单个耳塞中。较长的电池寿命也适用于连续监控方案。临床相关性 - 拟议的EAR-EEG系统可以用于诊断任务,例如客观听力阈值 - 旧估计,在临床环境之外,从而使其作为护理解决方案。
2020 年 6 月 15 日 2020 年 4 月,威斯康星州正处于一场历史性选举之中,当时正值 COVID-19 大流行。这些选举不仅包括总统候选人提名投票,还包括市议会、县议会、学校董事会和市长的地方竞选、威斯康星州最高法院席位的全州选举以及众多全区学校公投。市政当局必须迅速而频繁地做出调整,以确保遵守最高法院、威斯康星州最高法院和威斯康星州选举委员会 (WEC) 对选举的迅速变化的裁决。(2020 年 4 月的选举可能会作为威斯康星州最高法院和美国最高法院在同一天就选举方式发表意见的唯一一次选举而载入史册。)市政职员竭尽全力确保投票和选举管理符合现行的公共卫生要求,这也使不断变化的法律环境变得更加复杂。作为威斯康星州五大城市(密尔沃基、麦迪逊、绿湾、基诺沙和拉辛)的市长,我们希望在 2020 年剩下的两次选举(8 月 11 日和 11 月 3 日)上共同努力:安全地管理选举,以减少我们的居民以及选举官员和投票工作人员接触冠状病毒的风险;确定最佳做法;创新以有效教育我们的居民如何行使他们的投票权;有意且有策略地接触我们历史上被剥夺权利的居民和社区;最重要的是,确保我们人口稠密且多样化的社区的投票权。