气味受体(OR)是昆虫外围嗅觉系统的主要参与者,使其成为通过嗅觉破坏来控制害虫的主要目标。在化学生态学背景下用于识别或配体的传统方法依赖于分析昆虫环境中存在的化合物或筛选具有类似已知配体的结构的筛选分子。但是,这些方法可能是耗时的,并受其探索有限的化学空间的约束。最新的理解或结构理解的进步,再加上蛋白质结构预测的科学突破,促进了基于结构的虚拟筛选(SBVS)技术在加速配体发现中的应用。在这里,我们报告了SBV在昆虫ORS上的首次成功应用。我们开发了一种独特的工作流程,结合了分子对接预测,体内验证和行为分析,以鉴定非热门受体的新行为活性挥发物。这项工作是概念证明,为将来的研究奠定了基础,并强调了对改进的计算方法的需求。最后,我们提出了一个简单的模型,以基于以下假设来预测受体响应光谱,即结合袖珍特性部分编码了此信息,如我们对spodoptera littoralis ors的结果所建议。
有机发光二极管 (OLED) 在过去二十年里彻底改变了显示器行业 1 。尽管被广泛应用,但这些设备仍有很大改进空间,例如,现有技术的能源效率。市场迫切需要更深的红色和更高的色纯度,而传统发射器很难满足这一需求 2、3 。需要一类具有更长波长的新型红色掺杂剂,但简单的能隙定律考虑可以解释,由于非辐射衰减增加导致的效率降低是不可避免的 4、5 。因此,发光效率是商用红色掺杂剂最关键的材料特性。由于发射特性的微小变化往往会加剧效率下降,可能的解决方案是考虑主体-掺杂剂组合以更好地取向过渡偶极矩 6、7 ,或用功能团装饰发射极而不会过度改变发色团支架 8 ,但迄今为止尚未取得决定性的进展。一种潜在的解决方案是采用带有三个双齿配体的杂配体 Ir 配合物,其中两个主要负责发光,一个是支持辅助配体,不直接参与磷光。目标是通过改变辅助配体来消除非生产性衰变途径,从而对发光特性产生最小的影响 9 。在各种红色掺杂剂中,携带双齿苯基吡啶 (ppy) 型配体的 Ir(III) 配合物成为一类重要的发射体 10 ,典型的辅助配体是乙酰丙酮 (acac) 衍生物 2 。尽管使用辅助配体来控制掺杂剂化学行为的前景很诱人,但成功实施涉及辅助配体的合理设计策略却极为罕见 11 。在此采用详细的计算模型,我们发现除了延长 Ir – N 键之外,涉及配位层角度的结构变化也会导致辐射态的不良失活。利用这些精确的计算机模型的见解,我们推导出并通过实验证实了一种通用的设计策略。虽然 DFT 模型不一定准确,但它们提供了易于解释和概念化的精确信息。
Pierre Peterlin,JoëlleGaschet,Pascal Turlure,Marie-Pierre Gourin,Pierre-Yves Dumas,Sylvain ThePot,Ana Berceanu,Sophie Park,Marie-Anne医院,Thomas Cluzeau,Jose-Miguel Torregrosa Diaz,Louis Drevon,sophie sophie sophie, IME Jullien,Pierre Fenaux和Patrice Chevallier收到:2024年6月6日。接受:2024年11月13日。引用:Pierre Peterlin,JoëlleGaschet,Pascal Turlure,Marie-Pierre Gourin,Pierre-yves dumas,Pierre-yves dumas,sylvain thepot thepot thepots theboosa, Iaz,Louis Drevon,Rosa Sapena,Fatiha Chermat,Lionel Ades,Sophie Dimicoli-Salazar,Maxime Jullien、Pierre Fenaux 和 Patrice Chevallier。 FLT3 配体动力学特征可预测接受 CPX-351 治疗的高危骨髓增生异常综合征/慢性粒单核细胞白血病患者对治疗的反应:法语国家骨髓增生异常综合征小组的一项研究。血液学。 2024 年 11 月 21 日。doi:10.3324/haematol.2024.286025 [印刷前电子出版] 出版商免责声明。先于印刷的电子出版对于科学的快速传播越来越重要。因此,Haematologica 正在以电子方式发布已完成定期同行评审并被接受出版的手稿早期版本的 PDF 文件。该 PDF 文件的电子出版已获作者批准。稿件在印刷前进行电子出版后,将经过技术和英语编辑、排版、校对,并提交作者最终审批;手稿的最终版本将会出现在期刊的常规期刊中。所有适用于期刊的法律免责声明也适用于此制作过程。
环孔; si 0.5 li 0.5,其中li原子最初放置在Si孔上,SIH 0.89 li 0.11,其中li原子最初
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
氧化亚铜(CuOH)是一类重要的金属化合物,包括硫族化物[5,6]、卤化物[7,8]和一些复杂的盐(例如 Chevreul 盐)[9],它们在催化[10,11]、传感[12,13]、能量转换[14,15]和光学[16]等领域有着广泛的应用。其中,氧化亚铜(CuOH)长期以来一直受到人们的广泛关注。[17,18] 早在 20 世纪初,Miller 和 Gillett 就观察到在低温下(低于 60 °C)用铜工作电极电解 NaCl 溶液时,会产生黄色的 CuOH 沉淀。[19,20] 随后,人们进行了多项研究,探究通过各种方法合成的 CuOH 的特征结构和性能。 [21–23] 然而,在早期的研究中,CuOH 大多以块状固体形式存在,结构为亚稳态,由于缺乏适当的保护以防止氧化和/或脱水,当暴露于环境或热处理时,淡黄色沉淀物会迅速变为深红色,表明形成了 Cu 2 O。这种结构不稳定性使研究所得 CuOH 的性质和应用变得困难。2012 年,Korzhavyi 等人 [24] 进行了理论研究,证明 CuOH 可以以固体形式存在;然而亚稳态导致形成各种晶体结构构型的随机混合物,例如 Cu 2 O 和冰 VII H 2 O。Soroka
摘要:氧化还原的非处以配体与金属前体反应形成复合物,其中配体的氧化态和金属原子无法轻易定义。这是此类Lig-和s的一个众所周知的例子是BI(O-氨基酚)N,N'-BIS(3,5-二 - tert丁基-2-羟基 - 羟基苯基)-1,2-苯基二酰胺,以前是由WieghardT组开发的,它允许具有四个不同的蛋白质态态和四个不同的蛋白质均匀态,并且具有四个不同的蛋白酶元素,并且具有四个不同的蛋白酶元素,并具有四个不同的蛋白酶元素,并具有四个独特的蛋白酶元素,并具有四个不同的蛋白酶。国家。 这种丰富的氧化还原化学以及与各种过渡金属协调的能力,已用于具有M 2 L,ML和ML 2 stoichiomerties的金属配合物的合成中,有时还由其他配体支持。 配体的不同氧化态可以采用不同的配位模式。 例如,以完全氧化的形式,两个N捐赠者被SP 2杂交,这使配体平面使得,而在完全还原的形式中,SP 3杂交N供体允许形成更柔软的螯合物结构。 通常,在络合过程中可以减少金属,但是分离的复合物的氧化还原过程通常出现在配体上。 这种非一种中心配体与氧化还原活性过渡金属的组合可能会导致具有有趣的磁性,电化学,光子和催化特性的复合物。这是此类Lig-和s的一个众所周知的例子是BI(O-氨基酚)N,N'-BIS(3,5-二 - tert丁基-2-羟基 - 羟基苯基)-1,2-苯基二酰胺,以前是由WieghardT组开发的,它允许具有四个不同的蛋白质态态和四个不同的蛋白质均匀态,并且具有四个不同的蛋白酶元素,并且具有四个不同的蛋白酶元素,并具有四个不同的蛋白酶元素,并具有四个独特的蛋白酶元素,并具有四个不同的蛋白酶。国家。这种丰富的氧化还原化学以及与各种过渡金属协调的能力,已用于具有M 2 L,ML和ML 2 stoichiomerties的金属配合物的合成中,有时还由其他配体支持。配体的不同氧化态可以采用不同的配位模式。例如,以完全氧化的形式,两个N捐赠者被SP 2杂交,这使配体平面使得,而在完全还原的形式中,SP 3杂交N供体允许形成更柔软的螯合物结构。通常,在络合过程中可以减少金属,但是分离的复合物的氧化还原过程通常出现在配体上。这种非一种中心配体与氧化还原活性过渡金属的组合可能会导致具有有趣的磁性,电化学,光子和催化特性的复合物。
核酸纳米结构的自组装是由寡核苷酸模块通过互补序列之间的碱基配对选择性结合所驱动的。本文,我们报告了在腺苷配体控制下有条件组装的 RNA-DNA 混合纳米形状的开发。纳米形状的设计概念依赖于 DNA 适体的配体依赖性稳定,DNA 适体充当边缘稳定的 RNA 角模块之间的连接器。配体依赖性 RNA-DNA 纳米形状通过将腺苷结合与圆形闭合结构的形成相结合,在全有或全无的过程中进行自组装,这些结构通过在所得多边形中的连续碱基堆叠来稳定。通过筛选各种 DNA 适体构建体与 RNA 角模块的组合以形成稳定的复合物,我们确定了腺苷依赖性纳米方块,其形状通过原子力显微镜确认。作为传感器应用的概念验证,通过 DNA 适体成分的染料结合获得了对腺苷有响应的 FRET 活性纳米方块。
图 2. 脉冲 EPR 回波检测场扫描 (EDFS) 的模拟取向依赖性。(A) 四方 Cu(II) 复合物的平行和垂直取向定义。(B) 模拟 Cu(II) EDFS 和组成超精细 m I 流形的取向依赖性,自旋哈密顿参数 g ∥ = 2.0912、g " = 2.0218、A ∥ = −500.1 MHz ( − 166.8 × 10 -4 cm -1 )、A " = −116.9 MHz ( − 39.0 × 10 -4 cm -1 )、ν = 9.7 GHz,取自实验 [Cu(mnt) 2 ] 2- CW EPR 光谱的拟合结果。 (C)模拟的 V(IV) EDFS 和自旋哈密顿参数 g ∥ = 1.9650、g " = 1.9863、A ∥ = −478.0 MHz ( − 159.4 × 10 -4 cm -1 )、A " = −167.8 MHz ( − 55.9 × 10 -4 cm -1 )、ν = 9.7 GHz 的方向依赖性,取自实验 VOPc CW EPR 光谱的拟合结果。黑色实线箭头表示 EDFS 中的纯平行方向,而红色实线箭头表示纯垂直方向。
针对程序性死亡 (PD-1) 受体/配体 (L)“检查点”的免疫疗法在许多癌症类型的治疗中迅速取得进展。为了扩大治疗范围和疗效,需要预测性生物标记和合理选择联合治疗。为了满足这些需求,我们必须详细了解 PD-1 的功能。我们在此概述了最近对 PD-1 调节 CD8 + T 细胞反应的见解。普遍的观点是,阻断 PD-1/配体 (L) 相互作用会“重新激活”在肿瘤微环境 (TME) 中功能失调的细胞毒性 T 淋巴细胞 (CTL)。然而,本综述强调肿瘤与邻近的引流淋巴结 (LN) 持续沟通,并且 PD-1 检查点也在 T 细胞启动期间起作用。我们阐明了 PD-(L)1 系统在 T 细胞/DC 界面的作用,它调节 T 细胞受体 (TCR) 信号传导和 CD28 共刺激,从而控制肿瘤特异性 T 细胞的激活。我们还强调了 CD4 + T 细胞在启动过程中帮助的重要性,这使得 DC 能够提供最佳 CTL 分化所需的其他共刺激和细胞因子信号,并可能避免功能障碍状态。因此,我们认为 PD-(L)1 阻断应利用 LN 功能并与“帮助”信号相结合以优化 CTL 功效。