作者的完整清单:路易兹的Miranda de Souza Duarte Filho; La Rochelle大学,UMR CNRS 7266 LIENSS ORTEGA DE OLIVEIRA,PAMELLA; Fluminense Federal University,Yanaguashi Leal Organic Chemistry,Cintia;联邦Vale University do do do do do do francisco de Moraes,Marcela Cristina;联邦Fluminense University,Pocot,Laurent; La Rochelle大学,UMR CNRS 7266 LIENS
产品的窗口,如多项研究所示。2 - 12中的ADCELD,现场特定类型的所有类型的技术,如今已统治了进入临床试验的新ADC。然而,比较产生相同代谢物的同质和杂质ADC的免疫原的最新工作表明,特定部位的技术可能并不总是会增强该药物的小脂肪动物,并且也可能有害地改变其毒性。13 - 15实际上,几个标准,例如有效载荷的性质,链接器,结合化学,药物抗体比(DAR),ADC的疏水性可能会影响结合物的体内特性,这是在很快被预测的。即将进行的现场特定准备的ADC的大量临床研究可能有助于阐明是否存在单一的共轭化学物质会广泛使用,或者其他方法是否也适用。 因此,开发各种技术是为了进一步进步而有意义的。 由于大量暴露于溶剂的亲核氨基酸,尤其是赖氨酸,与抗体结合的位点可能具有挑战性。 尽管很困难,但通过开发多种技术,可以将其总结为工程性半胱氨酸,disul de 。即将进行的现场特定准备的ADC的大量临床研究可能有助于阐明是否存在单一的共轭化学物质会广泛使用,或者其他方法是否也适用。因此,开发各种技术是为了进一步进步而有意义的。与抗体结合的位点可能具有挑战性。尽管很困难,但通过开发多种技术,可以将其总结为工程性半胱氨酸,disul de
简介 癌症的发展和转移很大程度上取决于癌细胞与环境的相互作用,包括巨噬细胞,巨噬细胞大量渗入肿瘤,通常预后不良 (1, 2)。巨噬细胞是一种特殊细胞,它不断巡逻和监控身体,以解决感染和清除垂死细胞。当检测到异常时,例如在伤口愈合期间,巨噬细胞会消灭入侵的微生物,协调免疫系统,促进和解决炎症,并支持细胞增殖和组织重塑 (3)。微环境中的因素驱使巨噬细胞向特殊细胞状态发展,其中两种极端状态被描述为促炎、经典激活的 M1 状态和抗炎、替代激活的 M2 状态 (4)。然而,多项研究表明,巨噬细胞存在于一系列细胞状态和功能中,它们在不同的激活状态之间振荡 (5)。同样在肿瘤中,巨噬细胞的表型也多种多样,它们支持或抑制肿瘤进展。肿瘤相关巨噬细胞 (TAM) 最初试图恢复肿瘤的正常结构,类似于经典的 M1 激活巨噬细胞 (6)。然而,肿瘤细胞分泌和蛋白水解释放某些细胞因子和生长因子,如集落刺激因子-1 (CSF-1) (7) 和白细胞介素-4 (IL-4) (8),会将 TAM 诱导为促肿瘤表型,具有许多与替代激活的 M2 巨噬细胞相同的特征。因此,TAM 可以支持肿瘤生长、转移和免疫逃避,并保护肿瘤细胞免受化疗 (9–11)。TAM 表型是促肿瘤还是抗肿瘤,取决于肿瘤的起源以及肿瘤微环境 (TME) 内的确切信号传导。
window of the product, as illustrated by several studies. 2 – 12 In the ADC eld, site-speci c technologies of all types now domi- nate new ADCs entering into clinical trials. However, the recent work of ImmunoGen comparing homogenous and heteroge- nous ADCs that generate the same metabolites, suggests that site-speci c technologies may not always enhance the phar- macokinetics of the drug and may also detrimentally alter its toxicity pro le. 13 – 15 In fact, several criteria such as the nature of the payload, the linker, the conjugation chemistry, the drug- antibody ratio (DAR), the hydrophobicity of the ADC may have an impact on the in vivo properties of the conjugate, which are for the time being di ffi cult to predict. The large number of upcoming clinical studies of site-speci cally prepared ADCs may help clarifying if there is a single conjugation chemistry that will become of widespread use, or whether other methods will also be applicable. Therefore, developing various technol- ogies is of interest for further progress in the eld. Site-speci c conjugation to an antibody is challenging due to the large number of solvent-exposed nucleophilic amino acids, in particular lysines. Despite this di ffi culty, the eld has been very proli c through developing a wide array of technologies that can be summarized as engineered cysteines, disul de
图 1:酶动力学模型示意图。蛋白质以橙色矩形表示单体 (M),或一对重叠的绿色圆角矩形表示二聚体 (D)。水平或倾斜箭头上方的物种向右添加/向左移除。垂直箭头右侧的物种向下添加/向上移除。平衡常数 (K) 表示导致更复杂物种的方向,其中 K d 表示二聚化,KI 表示抑制剂结合,KS 表示底物结合。速率常数 k cat 取决于二聚化和配体结合。
图1:酶动力学模型的示意图。蛋白显示为单体(M)的橙色矩形或二聚体(D)的一对重叠的绿色圆形矩形。在水平或倾斜箭头上方的物种被添加向右/移除向左移动。在垂直箭头右侧的物种向下添加/去除。平衡常数(k)是导致更复杂物种的方向前进的,k d用于二聚化,k i用于抑制剂结合,而k s则用于底物结合。速率常数K CAT取决于二聚化和配体结合。
目的淀粉样变性运甲状腺素蛋白 (ATTR) 淀粉样变性是一种以进行性心肌病和/或多发性神经病为特征的致命疾病。AKCEA-TTR-L Rx (ION- 682884) 是一种配体结合的反义药物,旨在通过受体介导肝细胞(循环运甲状腺素蛋白 (TTR) 的主要来源)的摄取。反义药效团的增强递送有望提高药物效力并支持更低、更少频率的治疗给药。方法和结果与未结合的反义药物 inotersen 相比,AKCEA-TTR-L Rx 在人肝细胞培养物和表达突变的人类基因组 TTR 序列的小鼠中的效力分别提高了约 50 倍和 30 倍。这种效力的增加是由转基因 hTTR 小鼠模型中 AKCEA-TTR-L Rx 优先分布到肝脏细胞所支持的。进行了一项随机、安慰剂对照的 1 期研究,以评估健康志愿者中的 AKCEA-TTR-L Rx(ClinicalTrials.gov:NCT 03728634)。符合条件的参与者被分配到三个多剂量组(45、60 和 90 毫克)之一或一个单剂量组(120 毫克),然后随机分配 10:2(活性药物:安慰剂)在多剂量组中总共接受 4 次 SC 剂量(第 1、29、57 和 85 天)或在单剂量组中接受 1 次 SC 剂量。主要终点是安全性和耐受性;药代动力学和药效学是次要终点。所有随机参与者均完成治疗。未报告严重不良事件。在多剂量组中,AKCEA-TTR-L Rx 将 TTR 水平从基线降低至服用最后一剂 45、60 或 90 mg 后 2 周,平均值(SD)分别为 85.7%(8.0)、90.5%(7.4)和 93.8%(3.4),而合并安慰剂为 5.9%(14.0)(P < 0.001)。单剂量 120 mg AKCEA-TTR-L Rx 后,TTR 水平最大平均(SD)降低量为基线的 86.3%(6.5)。结论这些发现表明,通过肝细胞对 AKCEA-TTR-L Rx 的有效受体介导摄取,其药效得到提高,安全性和耐受性得到改善,并支持进一步开发 AKCEA-TTR-L Rx 用于治疗 ATTR 多发性神经病和心肌病。
在用于治疗复发性霍奇金淋巴瘤 [5,6] 的 Brentuximab vedotin (Adcetris) 和用于治疗 HER2 + 转移性乳腺癌 [7,8] 的 T-DM1 (Kadcyla) 获得美国食品药品管理局 (FDA) 临床批准的背景下。所谓的“魔弹”最初由 Paul Ehrlich 构想 [9],旨在将小分子药物的毒性与抗体的靶向能力结合起来,以提高总体疗效和治疗指数。[10–15] 尽管概念简单,但 ADC 的开发面临着若干挑战,包括可控的毒性、均质结合和有限的药物有效载荷能力。对于 ADC 来说,药物抗体比 (DAR) 和靶向能力之间的平衡是必需的,以降低候选药物的损耗率。DAR 非常高的 ADC 可能会降低对靶抗原的识别。 [16–19] 因此,开发具有高最大耐受剂量和高选择性的 ADC 是非常有必要的。[20–22]
摘要:由于表面暴露的赖氨酸的固有反应性低且在整个蛋白质组中普遍存在,因此对其进行靶向共价修饰具有挑战性。优化可逆结合抑制剂 ( k inact ) 共价键形成速率的策略通常涉及提高亲电试剂的反应性,这会增加离靶修饰的风险。在这里,我们采用了一种替代方法来提高赖氨酸靶向共价 Hsp90 抑制剂的 k inact ,而不依赖于可逆结合亲电性 ( K i ) 或固有亲电性。从非共价配体开始,我们附加了一个手性、构象受限的连接体,它使芳基磺酰氟与 Hsp90 表面的 Lys58 快速且对映选择性地发生反应。共价和非共价配体/Hsp90 复合物的生化实验和高分辨率晶体结构提供了有关配体构象在观察到的对映选择性中的作用的机制见解。最后,我们展示了细胞 Hsp90 的选择性共价靶向,尽管共价配体/Hsp90 复合物同时降解,但仍会导致热休克反应延长。我们的工作突出了设计配体构象约束的潜力,可以大大加速蛋白质靶标表面远端、亲核性较差的赖氨酸的共价修饰。■ 简介共价抑制剂作为药物、细胞生物学工具和化学蛋白质组学探针具有广泛的用途。不可逆的共价修饰导致药物-靶标停留时间与靶蛋白的寿命相匹配,通常与药物清除率无关。 1、2 此外,共价抑制剂可以通过与配体结合位点内或附近的非保守亲核氨基酸反应来区分密切相关的旁系同源物。3 − 8 目标亲核试剂的选择性修饰由两步反应机制决定,其中配体的可逆结合先于共价修饰。可逆结合亲和力和最初形成的非共价复合物内共价键形成的速率 ( k inact ) 都会影响共价抑制剂的效力。9 增加 k inact 的一个明显方法是增强亲电试剂的固有反应性。这种方法的缺点是它增加了发生不良的脱靶反应的可能性。因此,共价抑制剂的优化主要依赖于最大化非共价识别元素的可逆结合亲和力。 10,11 迄今为止,快速作用、高选择性共价配体的设计主要集中在半胱氨酸上,部分原因是其高内在反应性允许使用相对不活泼的亲电试剂(例如丙烯酰胺)。12 − 14 然而,半胱氨酸是蛋白质组中最不常见的氨基酸之一,许多配体结合位点缺乏近端半胱氨酸。
摘要 - CB2受体配体活性的准确预测是针对该受体的药物发现的关键,这与炎症,疼痛管理和神经退行性疾病有关。尽管传统的机器学习和深度学习技术已经显示出希望,但其有限的解释性仍然是理性药物设计的重要障碍。在这项工作中,我们介绍了CB2Former,该框架将图形卷积网络(GCN)与变压器体系结构相结合以预测CB2受体配体活动。通过利用变压器的自我发项机制以及GCN的结构学习能力,CB2Former不仅增强了预测性能,而且还提供了对受体活性基础分子特征的见解。我们针对各种基线模型进行基准测试,包括随机森林,支持矢量机,最近的邻居,梯度增强,极端梯度增强,多层感知器,卷积神经网络和重复的神经网络,并以0.685的0.685和0.685和0.67的0.67和0.67 and and and and and and and and and and and and and and and and 0.675,并表现出优势。此外,注意力重量分析揭示了影响CB2受体活动的关键分子子结构,强调了该模型作为可解释的AI的潜力。这种指出关键分子基序的能力可以简化虚拟筛选,指导铅优化和加快治疗性发育。总的来说,我们的结果展示了先进的AI方法(例如CB2Former)在提供准确的预测和可操作的分子见解方面的变革潜力,从而促进了药物发现中的跨学科合作和创新。