2010年,Itoh等人利用甲基乌苯美司合成了另一种PROTAC分子,以募集E3连接酶(凋亡蛋白抑制剂(IAP))来降解POI。为了提高效力和靶标选择性,具有高亲和力和特异性的小分子(例如,募集E3连接酶cereblon(CRBN)的邻苯二甲酰亚胺或识别E3连接酶Von Hippel-Lindau(VHL)的VHL-1)进入PROTAC分子,进而下调多种癌症靶标,例如Ikaros家族锌指蛋白1/3(IKZF1/3)和雌激素相关受体α(ERRα)。基于小分子的PROTAC的突破为PROTAC作为癌症治疗策略开辟了一条新道路。
图 1 DSB 修复途径总览 .DSB 发生后 , Ku70-80 会最先结合上来 , 如果不发生末端切除 , 会继而招募 DNA-PKcs, ligase IV, XRCC4 等 cNHEJ 核心因子介导 cHNEJ 修复途径 .如果末端发生 MRN-CtIP 介导的末端切除 , 则会产生 ssDNA 抑制 cNHEJ 修复途 径 .短程切除和长程切除产生的 ssDNA 可以通过链内退火进行修复 , 分别被称为 alt-EJ 和 SSA.长距离切除产生的 ssDNA 也可以 在 BRCA2-PALB2-BRCA1 复合体的帮助下和 RAD51 形成核蛋白纤维 , 进行同源找寻和连入侵过程 , 从而进入 HR 修复途径 .HR 途径又可以分为 BIR, SDSA 和 DSBR Figure 1 Overview of DSB repair pathways.The broken ends are first recognized and bound by Ku70-80.Without end resection, other cNHEJ core factors, such as DNA-PKcs, ligase IV, XRCC4, would be recruited to DSBs to mediate cNHEJ pathway.When MRN-CtIP-mediated resection occurs, the generated ssDNA will inhibit cNHEJ pathway.ssDNA from short-range and long-range resection can anneal in-strand to resolve the damages, termed Alt-EJ and SSA, respectively.ssDNA from long-range resection can also be bound by RAD51 to form nucleoprotein filament under the help of BRCA2-PALB2-BRCA1 complex.Nucleoprotein filament carry out homologous searching and strand invasion, promoting HR pathway.The HR pathway could be divided into BIR, SDSA and DSBR
通过 PROTAC(蛋白水解靶向嵌合体)和分子胶小分子进行靶向蛋白质降解 (TPD) 是一种新兴的治疗策略。为了扩大可用于 TPD 的 E3 连接酶名单,我们描述了靶向 E3 连接酶 KLHDC2 的小分子配体的发现和生化表征。此外,我们将这些 KLHDC2 靶向配体功能化为基于 KLHDC2 的 BET 家族和 AR PROTAC 降解剂,并展示了 KLHDC2 依赖的靶蛋白降解。此外,我们还深入了解了 KLHDC2 E3 连接酶复合物的组装。通过生化结合研究、X 射线晶体学和低温电子显微镜,我们表明 KLHDC2 E3 连接酶组装成通过其自身 C 末端结合在一起的动态四聚体,并且该组装可以通过底物和配体的结合进行调节。
PROTAC 提供了一种新机制,与传统的小分子抑制剂相比,它们可以高选择性地显著降低细胞中目的蛋白 (POI) 的利用度,同时大大降低副作用 [1]。第一个 PROTAC 由 Craig M. Crews 于 2001 年开发,自这一突破以来,该领域在过去二十年中得到了迅速发展 [2]。PROTAC 具有由三个元素组成的双功能结构——E3 泛素连接酶配体 [3,4]、POI 配体和连接两个配体的连接区。POI 配体通过与目的蛋白结合并将其隔离到连接的 E3 配体上,选择性地靶向并“劫持”目的蛋白。然后,E3 连接酶配体从胞质中募集 E3 泛素连接酶到含有结合目标蛋白的 PROTAC 复合物中,连接区将 POI 和 E3 连接酶配体结合在一起 [ 5 ]。因此,目标蛋白和 E3 连接酶被人为地拉近,从而允许蛋白靶标进行多泛素化,随后被蛋白酶体破坏(图 1 )。PROTAC 可用于破坏任何蛋白靶标,甚至是非天然泛素化的蛋白。文献表明,使用 PROTAC 技术可以降解 50 多种不同的靶蛋白。目前的靶标包括蛋白激酶、核受体和转录因子,还有更多潜在靶标正在开发中 [ 6 ]。本文涵盖的概念
106560268 LNX E3泛素 - 蛋白蛋白连接酶LNX类似于y n -3.45 -3.09降低106584115 lnx1 numb蛋白x 1,e3 ubiquitin X 1,ubiquitin y n -3.43(-3.43(-3.43)的配体-3.81-下降106564992 GM525未表征的蛋白C17orf67同源物N 3.99 3.99 3.84 UP 106573666 CHST6 CHST6碳水化合物硫酸盐硫酸盐转移酶6 -like N N N N N N N(3.2)3.47 UP
利用蛋白酶体介导的蛋白酶降解靶向嵌合体 (PROTAC) 选择性降解致病蛋白的能力是药物发现领域中一个令人兴奋的研究领域。PROTAC 由 3 个组件组成:E3 连接酶结合剂、接头和目标蛋白结合剂。任何 PROTAC 程序都可能需要合成大量化合物,这些化合物包含不同的 E3 连接酶、接头和靶向结合剂,以便识别命中化合物。PROTAC 的连续合成可能很慢,如果通过定制化学方法进行,有时需要几个月的时间,这对于快速的设计、制造、测试、分析 (DMTA) 周期来说太慢了。为了解决这个问题,GSK 开发了一个 E3 连接酶结合剂和接头库(图 2)。在开发用于 PROTAC 匹配物发现的阵列平台时,GSK 投资确定了高通量化学条件,以便从各种连接点探索 E3 连接酶,制备了千克级连接酶结合物以供平台使用,并在单体组中加入了专有的 E3 结合物。该平台的目标是使项目团队能够在不到 1 个月的时间内从获得功能化结合物到获得降解数据。在 PROTAC 平台的开发过程中,准备了数百种单体,这些单体具有各种长度和类型的连接物,以快速确定起点并探索降解结构 - 活性关系 (SAR)。
抽象评估靶蛋白降解(TPD)的潜在〜700 E3连接酶的适用性的主要挑战之一是缺乏针对每个E3连接酶的粘合剂。在这里,我们将遗传密码扩展(GCE)用于编码含四嗪的非典型氨基酸(TET-NCAA)位点特定于E3连接酶,可以通过在活着的细胞中与新的蛋白质蛋白质培养细胞一起将其连接到新的植物蛋白质蛋白培养细胞中。可以用Neo-Substrate的TPD评估所得的E3连接酶最小化和功能化的最小化和功能化。我们证明,用可单击的TET-NCAA编码的CRBN可以在已知的免疫调节药物(IMID)中或跨表面编码,可以共价连接到STCO-LINKER-JQ1和招募BRD2/4的crbn介导的降解,以表明CRBN的高塑料tpd。降解效率取决于在CRBN上编码的TET-NCAA的位置以及接头的长度,显示了这种方法在绘制E3连接酶表面识别最佳TPD口袋的能力。这种Elef-脱脂剂的方法不仅具有维持E3连接酶的天然状态,而且还允许在细胞内条件下对E3连接酶和靶蛋白伴侣进行询问,并且可以应用于任何已知的E3连接酶。关键字:泛素 - 蛋白酶体系统,靶向蛋白质降解,E3连接酶,Cereblon,遗传代码扩展,四嗪单击化学
在2001年记录了Protac的治疗潜力后,对靶向蛋白质降解的兴趣已从学术界转变为工业。1个Protac已成为一种治疗方式,几个候选者已进入临床试验。2 Protac的潜力在其结构中编码。接头将感兴趣的蛋白质(POI)结合部分连接到泛素E3连接酶识别部分(图1A)。异常结构使Protac可以使POI和E3连接酶更接近。这引起了POI的泛素化,然后由细胞的处置机制靶向。2
BMSC,骨髓间充质干细胞; Celmod,Cereblon E3连接酶调节药物; CRBN,Cereblon; CRL4,Cullin 4环泛素连接酶; Cul4,基于Cullin-Ring的E3泛素 - 蛋白连接酶; DDB1,损伤特异性DNA结合蛋白1; Dex,地塞米松; IFN,干扰素; il,白介素; IMID,免疫调节药物; NCAM,神经细胞粘附分子; NK,自然杀手; ROC1,Cullins 1的调节剂; TCR,T细胞受体; TGF,转化生长因子; UB,泛素; VCAM,血管细胞粘附分子; VEGF,血管内皮生长因子。1。Lonial S等。柳叶刀血肿。2022; 9(11):E822-E832; 2。Richardson PG等。 n Engl J Med。 2023; doi:10.1056/nejmoa2303194。 的数字来自:(左)Sato T等。 前细胞开发生物。 2021; 9:629326; (右)D'Souza C等。 前疫苗。 2021; 12:632399。 2Richardson PG等。n Engl J Med。2023; doi:10.1056/nejmoa2303194。的数字来自:(左)Sato T等。前细胞开发生物。2021; 9:629326; (右)D'Souza C等。前疫苗。2021; 12:632399。2