旋转过渡材料对于开发可拍照的设备具有吸引力,但它们的慢速材料转换限制了设备的应用。尺寸降低可以更快地切换,但是纳米级的光诱导动力学仍然鲜为人知。在这里,我们报告了一个飞秒光泵多模式X射线探针研究的聚合物纳米棒。同时使用X射线发射光谱和X射线衍射的结构跟踪自旋过渡顺序参数,我们观察到在〜150个飞秒范围内的低自旋晶格的光接头。高于A〜16%的光接头阈值,在分配给纳米棒中激活分子自旋开关的振动能量重新分布的孵育周期后,向高旋转期发生过渡。高于〜60%的光接头,孵育周期消失,过渡在〜50 picseconds之内完成,此前是弹性纳米棒的膨胀,响应于光启动。这些结果支持基于旋转材料的GHz光学切换应用的可行性。
混合现实(MR)和建筑跟踪技术的整合旨在解决几个关键问题。传统的培训方法虽然基础,但通常不足以使学生为现代建筑实践的复杂性做好准备,这些实践越来越多地融入了先进的技术。MR提供了一个安全,身临其境的学习环境,学生可以在其中练习木工技能,而无需与传统培训相关的身体风险。通过提供实时反馈并在跟踪技术提供的受控设置中练习复杂的任务,促进了对木工技能的更深入的理解和保留。这种创新的教育方法对于准备适应能力,精通数字工具的熟练劳动力很重要,并准备应对当代建筑业的挑战。通过实现目标和目标,出现了以下发现。
38,567 3,206 0.490 0.841 0.093 0.297 MEGNET 0.436 0.818 0.138 -0.603 CGCNN+P 39,500 2,563 0.392 0.786 0,113 0.0 Bowsr 1.964 0.300 0.712 0.118 0.151 0.684 0.122 0.055 Voronoi RF38,567 3,206 0.490 0.841 0.093 0.297 MEGNET 0.436 0.818 0.138 -0.603 CGCNN+P 39,500 2,563 0.392 0.786 0,113 0.0 Bowsr 1.964 0.300 0.712 0.118 0.151 0.684 0.122 0.055 Voronoi RF
抽象断层区域展示了3D可变厚度,该特征仍然不足,特别是在对流体流动的影响方面。分析分析溶液后,我们通过基准实验检查了3D热氢(Th)动力学模型,该实验结合了一个断层区,其厚度变化对应于逼真的数量级。这些发现强调了一个关注区域,其中剧烈对流驱动流体流动,导致在断层区最厚的部分的浅深度下,温度升高到150°C。此外,通过考虑3D热氢化机械(THM)模型中的各种构造制度(压缩,延伸和滑行)模型,并将其与基准测试实验进行比较,我们观察到在感兴趣的面积内作用于流体流动的流体压力引起的流体压力变化。这些构造引起的压力变化会影响区域的热分布和温度异常的强度。这项研究的结果强调了孔弹性驱动力对转移过程的影响,并强调了将断层几何形状作为关键参数的重要性,这是对破裂系统中流体流量的未来研究。此类研究在地热能,CO 2存储和矿藏中具有相关的应用。
基于光束中经典和量子相关性的技术(如鬼成像)使我们能够克服传统成像和传感协议的许多局限性。尽管这些技术有诸多优势,但它们的应用往往受限于目标物体的位置和纵向延伸未知的实际场景。在本文中,我们提出并通过实验证明了一种名为光场鬼成像的成像技术,该技术利用光相关性和光场成像原理,能够在广泛的应用中超越鬼成像的局限性。值得注意的是,我们的技术消除了对物体距离的先验知识的要求,从而可以在后处理中重新聚焦,并可以在保留鬼成像协议的所有优点的同时执行三维成像。
基于抽象的干细胞(SC)疗法被证明是再生医学的支柱。尽管有明显的潜在,可为再生治疗的SC的直接嫁接或植入SC遇到了各种翻译障碍,例如植入植入细胞的匮乏,降低效力降低,植入后细胞死亡,细胞死亡,细胞损害,由炎症预先存在的炎症和免疫抵押。因此,新兴大道是无细胞的方法;使用SC秘密。尽管正在探索基于药理学分子/化学物质,细胞因子和生长因子的启动方法以引起增强的秘密产量,但潜在的关注包括在分泌分离过程中需要连续补充和潜在的化学污染。为了减轻这些关注,还研究了各种用于振奋SC的非药物方法,其中包括光生物调节(PBM)具有引起的兴趣。尽管有积极的结果,但尚未确定标准化参数以进行重现结果。此外,基于PBM的SC刺激和秘密产生的机制阐明很差,并且存在对细胞类型的影响,培养条件对PBM的影响的重要知识差距。本综述旨在洞悉该新兴领域的当前状态,该领域强调了新的途径和临床翻译的潜在挑战。我们还总结了有关SC细胞类型和培养条件的基于PBM的增殖,分化和分泌的生产的研究。因此,已经提出了基于PBM的SC秘密的推定机制。此外,由于缺乏基于固定的PBM的固定协议,缺乏分化和秘密组,因此对基于PBM的SC刺激需求的功能目标和途径的知识升级。
腔QED的实验进步正在提高使用光探测线性响应状态以外的量子量的前景。访问量子相干现象的能力将显着提高领域。但是,已经选择了在量子相干制度中耦合到偶联的多体系统的理论工作。在这里,我们研究了微波炉中有限尺寸的量子线的辐射特性。量子线的示例包括单壁碳纳米管,这是纳米磁和等离子体模型领域中的关键实验系统。我们发现,对于多种激发态,光子的重复发射会导致多体量子纠缠的产生。这导致发射后续光子的速率增加,这是Dicke超级散发的一个例子。另一方面,保利的阻塞倾向于减少这种影响。在这种情况下,发现对一维电子系统的激发作为玻色子的激发的描述是一种强大的理论工具。它的应用意味着我们的许多结果都概括为具有强电子相互作用的电线。因此,量子线代表了一个新的平台,可以实现Dicke-Model物理学,而Dicke-Model物理不依赖于涉及许多空间隔离发射器的传统实现中所必需的各种调谐。更广泛地,这项工作证明了如何在多体系统中生成和测量量子纠缠。
卡伦堡工业共生症是组织间合作的一个很好的例子,展示了工业生态和循环经济原理。自1960年代以来,当地公司就建立了材料和能源交流网络,将废物和副产品转变为互惠互利系统中可重复使用的资源。该模型不仅减少了废物和温室气体的排放,而且还可以大量节省能源和原材料成本。此共生的主要参与者包括Asnæs发电厂等公司,例如Novo Nordisk,Novozymes和Statoil。这些组织交换热量,蒸汽,石膏和生物质的流量,创建了一个集成的网络,其中一个公司的废物成为另一个公司的资源。工业共生大大降低了CO 2排放,并节省了数百万立方米的水以及每年的残留材料。本研究说明强调,信任和组织间合作对于这种循环经济模型的成功至关重要,同时认识到其在其他地区的应用将需要针对当地条件量身定制的调整。关键词:循环经济,工业生态学,工业共生,组织间合作,卡伦堡(丹麦),互助,供应链简介