在这项研究中,使用了极端梯度提升(XGBoost)和光梯度提升(LightGBM)al-gorithms用间接太阳能干燥机的香蕉切片的干燥特性进行模型。建立了自变量(温度,水分,产品类型,水流量和产品质量)与因变量(能源消耗和降低)之间的关系。用于耗能,XGBoost在训练过程中以0.9957的r 2为0.9957,在测试过程中表现出优异的表现,在训练期间的最小MSE为0.0034,在训练期间为0.0008,在测试阶段表明高预测性获得率和低错误率。相反,LGBM显示较低的R 2值(0.9061训练,0.8809测试)和较高的MSE在训练过程中的MSE为0.0747,在测试过程中0.0337显示了0.0337,反映了较差的表现。同样,对于收缩预测,XGBOOST优于LGBM,较高的R 2(0.9887训练,0.9975测试)和较低的MSE(0.2527培训,0.4878测试)证明了LGBM。统计数据表明,XGBoost定期胜过LightGBM。基于游戏理论的Shapley功能表明,温度和产品类型是能源消耗模型的最具影响力的特征。这些发现说明了XGBoost和LightGBM模型在食品干燥操作中的实际适用性,以优化干燥调节,提高产品质量并降低能耗。
摘要随着技术高级和电子商务服务的扩展,信用卡已成为最受欢迎的付款方式之一,导致银行交易量增加。此外,欺诈的显着增加需要高银行交易成本。因此,检测欺诈活动已成为一个引人入胜的话题。在这项研究中,我们考虑使用类重量超级参数来控制欺诈和合法交易的重量。我们特别使用贝叶斯优化来优化超参数,同时保留诸如不平衡数据之类的实际问题。,我们提出重量调整作为不平衡数据的预先过程,以及Catboost和XGBoost,以通过考虑投票机制来提高LightGBM方法的性能。最后,为了进一步提高绩效,我们使用深度学习来微调超参数,尤其是我们提出的重量调节器。我们对现实世界数据进行一些实验,以测试提出的方法。为了更好地覆盖不平衡的数据集,除了标准ROC-AUC外,我们还使用召回精度指标。使用5倍的交叉验证方法分别评估了Catboost,LightGBM和XGBoost。此外,大多数投票集合学习方法用于评估组合算法的性能。LightGBM和XGBoost达到了ROC-AUC D 0.95,精度为0.79,召回0.80,F1得分0.79和MCC 0.79的最佳水平标准。这对我们将其比较的尖端方法进行了重大改进。通过使用深度学习和贝叶斯优化方法来调整超参数,我们还符合ROC-AUC D 0.94,精度D 0.80,召回D 0.82,F1分数D 0.81和MCC D 0.81。
摘要:心血管疾病仍然是当代世界中死亡率的主要原因。它与吸烟,血压升高和胆固醇水平的关联强调了这些危险因素的重要性。本研究解决了预测心肌疾病的挑战,这是医学研究中的一项艰巨任务。准确的预测是精炼医疗策略的关键。这项调查对六个不同的机器学习模型进行了比较分析:逻辑回归,支持向量机,决策树,包装,XGBoost和LightGBM。所达到的结果表现出希望,准确率如下:逻辑回归(81.00%),支持向量机(75.01%),XGBoost(92.72%),LightGBM(90.60%)(90.60%),决策树(82.30%)和装袋(83.01%)。值得注意的是,XGBoost作为表现最佳模型出现。这些发现强调了其增强冠状动脉梗塞预测精度的潜力。随着心血管危险因素的普遍性持续存在,结合了先进的机器学习技术,具有优化积极主动的医疗干预措施的潜力。
摘要本文致力于评估电影推荐系统中集合机器学习模型的有效性。它探讨了各种集合方法,包括随机森林,adaboost,XGBoost,LightGBM,Catboost和梯度提升机,以增强预测用户偏好的准确性。该研究基于Movielens 100K数据集,该数据集包含1,682部电影中943位用户的100,000个评级。功能工程,数据归一化方法和迭代功能选择的应用提高了模型准确预测用户兴趣的能力。分析表明,XGBoost模型的最佳结果为0.902,与所考虑的其他模型相比,预测准确性更高。LightGBM和Catboost还显示了竞争结果,RMSE值分别为0.910和0.919。这项研究强调了综合方法在开发适应用户各种偏好和环境的建议系统中的重要性,并在该领域开辟了广泛的观点,以进一步研究。
摘要。随着能源需求继续上升,可再生能源(例如光伏(PV)系统)越来越流行。PV系统将太阳辐射转换为电力,使其成为减少传统电源依赖并减少碳排放的有吸引力的选择。为了优化PV系统的使用,智能预测算法至关重要。他们可以更好地制定有关成本和能源效率,可靠性,功率优化和经济智能电网操作的决策。机器学习算法已被证明可以有效地估算PV系统的功率,从而通过允许模型了解参数之间的复杂关系并评估光伏电池的输出功率性能来提高准确性。这项工作介绍了一项有关使用机器学习算法Catboost,LightGBM,XGBoost和随机森林的研究,以改善预测。研究结果表明,使用机器学习算法LightGBM可以提高PV功率预测的准确性,这可能对优化能源使用具有重要意义。除了降低不确定性外,机器学习算法还提高了PV Systems的效率,可靠性和经济可行性,从而使它们作为可再生能源更具吸引力。
尽管许多研究都集中在海洋事故的可能性上,但很少有人专注于分析后果的严重程度,甚至更少的预测严重程度。为此,在本研究中提出了一个新的研究框架,以准确预测海洋事故的严重性。首先,开发了一种新颖的两阶段特征选择(FS)方法,以选择和对风险影响因素(RIF)进行排列,以提高MA Chine学习(ML)模型的准确性(ML)模型和FS的解释性。第二,提出了一种全面的评估方法,以根据稳定性,预测性能改善和统计检验来衡量FS方法的性能。第三,使用了六个完善的ML模型,并比较了不同预测因子的性能。发现光梯度提升机(LightGBM)具有对海洋事故的严重性词典的最佳预测性能,并被视为基准模型。最后,LightGBM根据提出的FS方法选择的RIF来预测事故严重程度,并从定量的角度对风险控制措施的效果进行了反作用。这项有关改进ML方法使用的创新研究可以有效地分析和预测海洋事故的严重性,为在安全评估和预防事故预防研究中使用人工智能(AI)技术提供新的方法,并触发了新的方向。源代码可公开可用:https://github.com/fengyinleo/pgi-sdmi。
摘要:铁路场景的理解对于各种应用程序至关重要,包括自主火车,数字缠绕和基础设施变更监控。但是,后者的开发受到现有算法缺乏注释的数据集和局限性的限制。为了应对这一挑战,我们提出了铁路3D,这是铁路环境中语义细分的第一个综合数据集,并进行了比较分析。Rail3D涵盖了来自匈牙利,法国和比利时的三种不同的铁路环境,捕获了各种各样的铁路资产和条件。有超过2.88亿个注释点,Rail3D超过了大小和多样性的现有数据集,从而可以训练可概括的机器学习模型。我们进行了一个通用的分类,该分类使用了九个通用类(地面,植被,铁路,电线,信号,围栏,安装和建筑物),并评估了三种最先进模型的性能:KPCONV(内核点卷积),LightGBM和随机森林。最佳性能模型,一种经过的kPCONV,在联合(MIOU)上达到了平均值为86%。基于LightGBM的方法获得了71%的MIOU,但表现优于随机森林。这项研究将通过为3D语义细分提供全面的数据集和基准,从而使基础设施专家和铁路研究人员受益。数据和代码可公开用于法国和匈牙利,并根据用户反馈进行连续更新。
结果:本研究中使用的最终数据集由1,048,422例使用参与者的年度健康检查记录,包括肾衰竭患者(n = 13,156 [1.27%])。表现最佳的模型是双重组件,其中包括所有功能,不包括年龄,包括脊回归和LightGBM组成,AUROC为0.754,精度为0.693,特异性为0.693,敏感性为0.691,敏感性为0.691,测试数据集对0.692的精度平衡。最后,预测肾衰竭的五个最重要特征是年龄,体重指数,空腹血糖,舒张压和收缩压。
方法:这项研究通过利用2020年中国卫生和退休纵向研究的数据选择了7,880名老年人。此后,数据集以6:4的比例分类为训练和测试集。使用六种ML算法,即逻辑回归,k-neart邻居,支持向量机,决策树,LightGBM和随机森林,用于构建老年人抑郁症的预测模型。比较了不同模型的ROC曲线中的差异,进行了DELONG检验。同时,为了评估模型的性能,这项研究执行了决策曲线分析(DCA)。此后,将构图的解释值用于模型解释,以预测结果的实质性贡献。
方法:我们选择了越南中部地区疾病负担较重的七种传染病类别:蚊媒疾病、急性胃肠炎、呼吸道感染、肺结核、败血症、原发性神经系统感染和病毒性肝炎。我们开发了一套问卷,收集疑似传染病患者的当前症状和病史信息。我们使用从 1,129 名患者收集的数据来开发和测试诊断模型。我们使用 XGBoost、LightGBM 和 CatBoost 算法来创建用于临床决策支持的人工智能。我们使用 4 倍交叉验证方法来验证人工智能模型。经过 4 倍交叉验证后,我们在单独的测试数据集上测试了人工智能模型,并估计了每个模型的诊断准确性。