量子自旋液体和曾经是凝结物理学主体的量子自旋液体,现在在各种Qubits中实现,提供了前所未有的机会,以研究多体量子渗透状态的典型物理学。量子不可避免地会暴露于环境的效果,例如熔融和耗散,据信这会导致多体纠缠。在这里,我们认为,与常见的信念折叠和耗散不同,可以引起量子自旋液体中新型的拓扑作用。我们通过Lindblad主方程方法研究Kitaev旋转液体和感谢您的曲折代码的开放量子系统。通过使用精确的溶液和数值方法,我们显示了通过反应和耗散的Anyon缩合的动态发生,从而导致从初始状态旋转液体到稳态旋转液体的拓扑转换。阐明了lindblad动力学的Anyon冷凝转换的机制。,我们还提供了对Anyon凝结图中Kitaev旋转液体与曲折代码之间的关系。我们的工作建议开放的量子系统是量子旋转液体和任何人的拓扑现象的新场地。
量子启发模型在许多下游语言任务(如问答和情感分析)中表现出色。然而,最近的模型主要关注嵌入和测量操作,忽略了量子演化过程的重要性。在这项工作中,我们提出了一种新型的量子启发神经网络 LI-QiLM,它集成了林德布拉德主方程 (LME) 来建模演化过程和干涉测量过程,提供更多的物理意义以增强可解释性。我们对六个情感分析数据集进行了全面的实验。与传统神经网络、基于 Transformer 的预训练模型和量子启发模型(如 CICWE-QNN 和 ComplexQNN)相比,所提出的方法在六个常用的情感分析数据集上表现出卓越的准确率和 F1 分数。额外的消融测试验证了 LME 和干涉测量的有效性。
尽管致力于研究量化的光模式与物质之间的相互作用,但所谓的Ultrastrong耦合制度仍然对理论处理提出了重大挑战,并阻止了许多常见的近似值。在这里,我们展示了一种可以描述任何相互作用方面的混合量子系统动力学的方法。我们扩展了一种用于将任意系统的几种量化量化的方法扩展到Ultrastrong Light-MATTER耦合的情况下,并表明即使可以使用lindblad Master方程来处理此类系统,其中仅通过在负频率上充分抑制EM环境的有效频谱密度,即衰减仅在光子模式上作用于光子模式。我们证明了我们的框架的有效性,并表明它的表现要优于简单模型系统的当前最新主体方程,然后研究无法应用现有方法的现实纳米质设置。
量子理论中的时间演化通常用作用于表示量子系统的全希尔伯特空间或密度矩阵的幺正变换来描述。这种变换通常通过求解相关的薛定谔方程,从系统的哈密顿量中获得。然而在实践中,我们通常无法获得完整的量子系统:最常见的例子是所研究系统与环境的相互作用,环境被定义为该系统与其自身以外的任何事物相互作用。当考虑量子力学系统的一部分时,时间演化不再是幺正的或马尔可夫的,它的处理需要新的工具。在本文中,我们将重点介绍如何通过林德布拉形式来实现这一点。事实证明,在马尔可夫性假设下,可以通过求解一阶微分方程来获得系统可访问部分的时间演化,就像在封闭系统的情况一样。具体来说,我们可以推导出汉密尔顿算子的广义版本,即林德布拉算子,它通过类似于薛定谔的方程来描述系统的时间演化。然而,这种时间演化将不是单一的