抽象的Mitoviruses(Mitoviridae家族)是在真菌和植物的线粒体中代表的小无衣壳RNA病毒。迄今为止,唯一的真实的动物米托病毒被鉴定为Lutzomyia longipalpis mitovirus 1(Lulmv1)。来自几种动物的转录组研究的公共数据库可能是识别经常错过的Mitovires的好来源。因此,在NCBI转录组shot弹枪组装(TSA)库中搜索类似于Mitovirus的转录本,以及对先前在NCBI非冗余(NR)蛋白质序列库中记录的Mito-病毒的搜索,以识别与动物相关的类似Mitovirus序列。在TSA数据库中总共确定了10个新的推定中病毒,在NR Pro-te-te-te-Te-Te-Teperin数据库中总共确定了5个推定的Mitovires。据我们所知,这些结果代表了与Poriferan,Cnidarians,echinoderms,Crustaceans,Myriapods和Arachnids相关的推定线病毒的第一个证据。根据使用最大似然法的不同系统发育推论,这18种推定的线索病毒与LULMV1(唯一已知的动物感染线虫病毒)形成了强大的单系谱系。基于计算机程序中的这些发现,证明了与动物相关的一系列推定的mitovirus的有力证据,这些枝条被临时命名为“ kvinmitovirus”。
氨氧化古细菌(AOA)是地球上最普遍,最丰富的古细菌之一,在海洋,陆地和地热生态系统中广泛分布。与海洋和土壤系统相比,地下环境中AOA种群的基因组多样性,生物地理学和进化过程被大量研究。在这里,我们报告了一种新颖的AOA订单candidatus(CA.)硝基瘤,形成了嗜热ca的姐妹谱系。硝基层。宏基因组和16S rRNA基因读取映射表明,在各种地下水环境中,硝基瘤AOA大量存在及其在一系列地热,陆地和海洋栖息地的广泛分布。陆生氮气肌瘤AOA显示使用甲酸盐作为还原剂来源并使用硝酸盐作为替代电子受体的遗传能力。硝基瘤AOA似乎通过水平基因转移从其他中间人群中获得了关键的代谢基因和操纵子,包括编码尿素酶,亚硝酸盐还原酶和V-type ATPase的基因。获得的功能赋予的其他代谢多功能性可能已促进其辐射到各种地下,海洋和土壤环境中。我们还提供了证据表明,这四个AOA命令中的每一个都跨越了海洋和陆地栖息地,这表明主要AOA谱系比以前提出的更复杂的进化史。一起,这些发现建立了AOA的可靠系统基因组框架,并为该全球丰富的功能公会的生态学和适应提供了新的见解。
takuya uehata(日本京都大学)Yamada(日本京都大学)Daisuke Ori(日本京都大学)Alexis Vandenbon(日本京都大学,日本京都大学)Amir Giladi(以色列科学学院)Adam Jelinski(weizmann Instraizhir) (日本京都大学)Hitomi Watanabe(日本京都大学)Kazuhiro Takeuchi(日本京都大学)Kazunori Toratani(日本京托大学,日本京都大学)Takashi Mino(日本京都大学,日本)HISANORI KIRYU(日本)托尔伊大学(University the University of Tokanori kiryu) Tsujimura(日本荷马科医科大学)Tomokatsu Ikawa(日本东京科学大学)kondoh(日本京都大学)Markus Landthaler(MaxDelbrück,德国分子医学中心)阿米特(以色列魏兹曼科学学院)雅amoto(日本京都大学)Masaki Miyazaki(日本京都大学生命与医学科学研究所)Osamu Takeuchi(日本京都大学)
Cre-loxp介导的遗传谱系追踪系统对于构建单细胞后代或细胞种群的命运图是必不可少的。了解心脏祖细胞的结构层次结构促进了心脏发育中的细胞命运和起源问题。基于前瞻性Cre-loxP的谱系 - 追踪系统已被用于精确分析心内膜细胞(ECS),心外膜细胞和心肌细胞的命运确定和发育特征。因此,新兴的谱系追踪技术推进了心血管相关细胞可塑性的研究。在这篇综述中,我们说明了新兴CRE-LOXP的原理和方法,用于基于心脏中不同细胞谱系的轨迹监测的轨迹监测。使用遗传谱系追踪技术对单细胞后代的分化过程的全面证明为心脏发展和稳态做出了杰出的贡献,为先天性和心血管疾病(CVD)的组织再生提供了新的治疗策略。
引用这篇文章:Rahul K. Suryawanshi,Taha Y. Taha,Maria McCavitt-Malvido,Ines Silva,Mir M. Khalid,Abdullah M. Syed,Irene P. Chen,Prachi Saldhi OR-GONZALEZ,威尼斯·塞维利塔,阿米莉亚·格里瓦,珍妮·恩格扬,诺亚·库吉玛,特雷莎·阿雷拉诺,阿利亚·巴斯萨尼奇,维多利亚·赫斯,玛丽亚·赫克斯,玛丽亚·谢克拉,劳伦·洛佩兹NA,Lee Spraggon,Charles Y. Chiu&Melanie Ott(2023)。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2020年11月13日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2020.11.12.368522 doi:Biorxiv Preprint
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 1 月 10 日发布了此版本。;https://doi.org/10.1101/2025.01.08.631895 doi:bioRxiv 预印本
好......................................................................................................................................................................................................................................................................................................................................................................................................................................................... 71
探索上皮 - 间充质转变(EMT)的复杂性揭示了各种潜在的细胞命运;然而,早期细胞状态差异为不同的EMT轨迹的确切时机和机制尚不清楚。通过单个细胞RNA测序研究这些EMT轨迹,由于需要为每次测量牺牲细胞,因此具有挑战性。在这项研究中,我们采用了最佳运输分析来重建MCF10A细胞系中TGF - β-诱导的EMT期间不同细胞命运的过去轨迹。我们的分析揭示了导致低EMT,部分EMT和高EMT状态的三个不同的轨迹。沿部分EMT轨迹的细胞在EMT特征中显示出很大的变化,并表现出明显的茎。 在整个EMT轨迹中,我们观察到EED和EZH2基因的一致下调。 这一发现得到了EMT调节剂和CRISPR筛查研究的最新抑制剂筛查的验证。 此外,我们将早期 - 相位差异基因表达的分析应用于与干性和增殖相关的基因集,将ITGB4,LAMA3和LAMB3指定为在部分阶段与高EMT轨迹的初始阶段差异表达的基因。 我们还发现CENPF,CKS1B和MKI67在高EMT轨迹中显示出显着的上调。 第一组基因与先前研究的发现保持一致,但我们的工作独特地指出了这些上调的确切时机。 最后,后者基因的鉴定揭示了调节EMT轨迹的潜在细胞周期目标。细胞在EMT特征中显示出很大的变化,并表现出明显的茎。在整个EMT轨迹中,我们观察到EED和EZH2基因的一致下调。这一发现得到了EMT调节剂和CRISPR筛查研究的最新抑制剂筛查的验证。此外,我们将早期 - 相位差异基因表达的分析应用于与干性和增殖相关的基因集,将ITGB4,LAMA3和LAMB3指定为在部分阶段与高EMT轨迹的初始阶段差异表达的基因。我们还发现CENPF,CKS1B和MKI67在高EMT轨迹中显示出显着的上调。第一组基因与先前研究的发现保持一致,但我们的工作独特地指出了这些上调的确切时机。最后,后者基因的鉴定揭示了调节EMT轨迹的潜在细胞周期目标。
识别在发育、再生和疾病状态下产生分化细胞类型的祖细胞对于理解控制此类转变的机制至关重要。一个多世纪以来,人们开发了不同的谱系追踪策略,这有助于解开祖细胞与其后代之间的复杂关系。在这篇综述中,我们讨论了谱系追踪分析如何随着技术进步而发展,以及这种方法如何有助于在不同细胞分化背景下识别祖细胞。我们还重点介绍了几个例子,其中谱系追踪实验有助于解决长期存在的争论和识别意想不到的细胞起源。本讨论强调了这一百年来描绘细胞谱系关系的探索如何仍然活跃,并且随着新方法的发展,人们正在取得新的发现。
