1 神经科学和医学研究所 (INM-1), 于利希研究中心, Jülich 52425, 德国, 2 C. & O. Vogt 脑研究所, 杜塞尔多夫大学医院, 海因里希-海涅大学杜塞尔多夫, 杜塞尔多夫 40225, 德国, 3 Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad马德里理工大学,马德里 28223,西班牙,4 卡哈尔研究所,高级科学研究委员会 (CSIC),马德里 28002,西班牙,5 阿姆斯特丹大学斯瓦默丹生命科学研究所认知与系统神经科学组,阿姆斯特丹,1098 XH,荷兰,6 国家科学研究中心,神经科学研究所(NeuroPSI),巴黎萨克雷大学,Gif sur Yvette 91400,法国,7 国家研究委员会生物物理研究所,巴勒莫 90146,意大利,8 临床神经科学系,沃州大学中心医院,洛桑 CH- 1011,瑞士,9 计算机科学系,曼彻斯特大学,曼彻斯特 M13 9PL,英国,10 信息学系,慕尼黑工业大学,加兴 385748,德国,11 丹麦技术委员会基金会,哥本哈根,2650 Hvidovre,丹麦,12 基础医学科学研究所,奥斯陆大学,奥斯陆,挪威,13 雅典研究与创新中心,雅典 12125,希腊,14 信息学与电信系,雅典国立和卡波迪斯特里安大学,157 84 雅典,希腊,15 高级模拟研究所 (IAS),于利希超级计算中心(JSC),于利希研究中心,于利希 52425,德国,16 ICREA 和系统神经科学,生物医学调查研究所 August Pi i Sunyer,巴塞罗那 08036,西班牙,17 认知神经科学系,认知神经科学系,心理学和神经科学学院,马斯特里赫特大学,马斯特里赫特 6229 EV,荷兰,18 艾克斯马赛大学,国家健康与医学研究所,系统神经科学研究所 (INS) UMR1106,马赛 13005,法国
研究社会,经济和历史问题,社会科学和人文学科的研究人员已经开始使用越来越大的非结构化文本数据集。虽然NLP的最新进展提供了许多有效处理此类数据的工具,但大多数现有方法都依赖于对特定领域任务的性能和适用性的通用解决方案。这项工作提出了通过探索现代实体链接方法来丰富博物馆收集数据的使用来弥合此领域差距的尝试。我们收集了一个数据集,该数据集包含1700多个用7,510个提及对的文本,使用此数据集评估一些现成的解决方案,最后在此数据上对最近的端到端EL模型进行微调。我们表明,我们的微调模型大大优于该域中当前可用的其他方法,并呈现此模型的概念验证用例。我们发布数据集和最佳模型。
摘要:在多种生物医学应用中,类似病毒样颗粒(VLP)作为纳米镜出现,包括疫苗抗原和货物(例如mRNA)到粘膜表面的货物。这些软,胶体和蛋白质结构(衣壳)仍然容易受到粘膜环境应力因素的影响。,我们使用同质功能的聚乙烯甘油三甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基氨基酸残基交联多个衣壳表面氨基酸残基,以提高衣壳的持久性和存活率以模拟粘膜应激源。表面交联增强了从低pH值(向下pH 4.0)和高蛋白酶浓度条件(即在猪和小鼠胃液中)组装的VLP的稳定性。此外,它增加了使用原子力显微镜悬臂尖端应用的局部机械压痕下VLP的刚度。小角度X射线散射显示交联后的衣壳直径增加,并且与PEG交联的长度增加了衣壳壳的厚度。此外,表面交联对VLPS的粘液易位和积累在体外3D人类鼻上皮组织的上皮上的积累没有影响。最后,它并未损害VLPS在小鼠皮下疫苗接种模型中的疫苗功能。与没有交联的脉络化相比,相同长度的PEG分子的表面交联VLP的刚度更高,并且在胃液中表面交叉连接的VLP的寿命更长。使用大分子系tether的表面交联,但不是对这些分子的简单结合,因此提供了一种可行的手段来增强VLP对粘膜应用的弹性和存活。关键字:病毒样颗粒疫苗,粘膜递送,纳米压力,粘液相互作用,聚乙烯甘油二醇,生物医学应用V
AI工具可以通过自动化重复任务或协助创建内容和通信来提高生产率。AI可以转录会议,总结讨论并根据对话见解提出行动。otter.ai是Clemson Advancement使用的产品,可以帮助您提高记录和开会时间。与任何AI工具一样,需要考虑某些预防措施,需要遵循最佳实践。以下说明将向您展示如何登录otter.ai工具并在日常工作中更有效地使用它。
摘要:最近的研究表明,在整个历史记录中,潜在的可预测性和实际预测技能主要是由于自然际变异性。在这项研究中,我们探讨了未来是否预计将来可能会变化的潜在可预测性,这是对人为气候变化的独特反应。我们估计了厄尔尼诺现象的潜在预测 - 南部振荡(ENSO)以及全球表面温度,降水和大气上的循环循环异常,从1921年到2100年,在完美的模型框架内,使用五个辅助模型大型组合模型。我们发现,历史和预测的ENSO振幅变化通过ENSO驱动的季节性预测的信噪比的变化在气候可预测性中产生了全球规模的变化,Niño-3.4标准偏差的变化为10%,导致全球平均预测能力14%的标准偏差在12个月的全球平均能力上的变化14%。这种关系表明,在未来几十年中,全球大部分地区的潜在可预测性变化可能与ENSO的人为气候变化有关。然而,由于当前模型在预计的ENSO变化的符号和强度上大大不同意,因此无法确定未来全球预方法变化的轨迹。通过在五个大型合奏中看到的可预测性变化广泛变化来证明,模型表现出强大的增加,稳健的减少或预测能力的显着变化,具体取决于它们各自的预测ENSO振幅趋势。我们的结果强调了对气候模型开发的需求,旨在更好地捕获过去强迫和强制性的ENSO变异性的变化,这是必要的(如果不舒服的话),以将投影变化限制为全球气候可预测性。
标题:将神经元群体格式与功能联系起来作者:Douglas A. Ruff 1、Sol K. Markman 1,2、Jason Z. Kim 3、Marlene R. Cohen 1 1 美国伊利诺伊州芝加哥大学神经生物学系 2 美国马萨诸塞州麻省理工学院脑与认知科学系 3 美国纽约州伊萨卡康奈尔大学物理系摘要 具有复杂行为的动物往往比简单生物具有更多不同的大脑区域,而执行多项任务的人工网络往往会自组织成模块 (1-3)。这表明不同的大脑区域发挥着不同的功能来支持复杂的行为。然而,一个常见的观察是,动物感觉、知道或做的任何事情基本上都可以从任何大脑区域的神经活动中解码 (4-6)。如果万物无处不在,为什么还要有不同的区域?这里我们表明,大脑区域的功能更多地与不同类型的信息在神经表征中如何组合(格式化)有关,而不仅仅与这些信息是否存在有关。我们比较了两个大脑区域:中颞区(MT),对视觉运动感知很重要(7,8),以及背外侧前额叶皮质(dlPFC),与决策和奖励预期有关(9,10))。当猴子根据运动和奖励信息的组合做出决策时,这两种类型的信息都会出现在两个大脑区域中。然而,它们的格式不同:在 MT 中,它们是单独编码的,而在 dlPFC 中,它们以反映猴子决策的方式联合表示。一个反映了 MT 和 dlPFC 中信息格式的循环神经网络(RNN)模型预测,操纵这些区域的活动将对决策产生不同的影响。与模型预测一致,电刺激 MT 偏向于视觉运动刺激和受刺激单元的首选方向之间的中间位置的选择(11),而刺激 dlPFC 则产生“赢家通吃”决策,有时反映视觉运动刺激,有时反映受刺激单元的偏好,但绝不会介于两者之间。这些结果与模块化结构通过灵活地重新格式化信息来实现行为目标,从而实现复杂行为的诱人可能性相一致。神经群体反应中不同信息源的格式化在单个神经元中并不明显。长期以来,人们都知道单个神经元的反应反映了多种感觉、认知和/或运动过程。例如,MT 神经元针对视觉运动方向进行调整(7、8、12-14),其反应受到奖励信息(例如与刺激或选择相关的预期奖励)和其他认知过程的调节(通常成倍增加)(15-18)。然而,从单个神经元研究中收集到的已知的调整和调制模式与群体中关于运动方向和奖励信息的多种格式化方式相一致(有时称为表征几何或神经群体几何(19, 20))。之所以出现不同的可能性,是因为即使是相同调整的神经元,也会受到认知过程的异质性调制。通过在对运动方向具有相同调整的神经元中增加一些奖励预期调制量的随机性来模拟这种异质性(图 1A;方法)可以产生运动方向和奖励预期的群体表示,这些表示要么是可分离的(在每个神经元的响应为一维的空间中以不同维度编码;图 1B、C、D),要么是组合的(以相同维度编码;图 1E、F、G)。可分离和组合群体格式之间的差异无法从单个神经元响应中得知,而是来自于奖励预期的调制如何以及是否在整个群体中协调。
将人类行为与大脑结构联系起来:进一步的挑战和可能的解决方案Chen Song 1,*,Kristian Sandberg 2,Renate Rutiku 3和Ryota Kanai 4 1。加的夫大学脑研究成像中心,加的夫大学,加的夫,英国。2。功能整合神经科学中心,丹麦奥胡斯大学的奥尔胡斯大学。3。波兰克拉科夫的贾吉伦大学心理学研究所。4。Araya Inc.,日本东京。 *电子邮件:songc5@cardiff.ac.uk在及时的文章中,Genon及其同事回顾了MRI研究的最新发展,旨在将人类行为与大脑结构联系起来(Genon,S.,Eickhoff,S.B. &Kharabian,S。将大脑结构的个体变异与行为联系起来。 nat。 修订版 Neurosci。 23,307–318(2022))1。 他们认为,在过去的十年中,该领域目睹了研究发现的可复制性低,并且有效的大小减少。 他们指出采用多元方法是前进的一个有前途的道路。 我们认可他们有见地的建议,并想提请注意两个点,我们认为这代表了未来的关键挑战和可能的解决方案。 存在结构MRI信号与潜在的“真实”大脑结构之间的简单一对一关系。 MRI信号反映了体素内各种结构成分的混合贡献,其中一些成分以截然不同的方式影响大脑功能。 值得注意的是,正在进行一些有希望的发展来弥合这一差距。Araya Inc.,日本东京。*电子邮件:songc5@cardiff.ac.uk在及时的文章中,Genon及其同事回顾了MRI研究的最新发展,旨在将人类行为与大脑结构联系起来(Genon,S.,Eickhoff,S.B.&Kharabian,S。将大脑结构的个体变异与行为联系起来。nat。修订版Neurosci。23,307–318(2022))1。 他们认为,在过去的十年中,该领域目睹了研究发现的可复制性低,并且有效的大小减少。 他们指出采用多元方法是前进的一个有前途的道路。 我们认可他们有见地的建议,并想提请注意两个点,我们认为这代表了未来的关键挑战和可能的解决方案。 存在结构MRI信号与潜在的“真实”大脑结构之间的简单一对一关系。 MRI信号反映了体素内各种结构成分的混合贡献,其中一些成分以截然不同的方式影响大脑功能。 值得注意的是,正在进行一些有希望的发展来弥合这一差距。23,307–318(2022))1。在过去的十年中,该领域目睹了研究发现的可复制性低,并且有效的大小减少。他们指出采用多元方法是前进的一个有前途的道路。我们认可他们有见地的建议,并想提请注意两个点,我们认为这代表了未来的关键挑战和可能的解决方案。存在结构MRI信号与潜在的“真实”大脑结构之间的简单一对一关系。MRI信号反映了体素内各种结构成分的混合贡献,其中一些成分以截然不同的方式影响大脑功能。值得注意的是,正在进行一些有希望的发展来弥合这一差距。例如,定量T1 MRI信号的增加可能导致髓鞘降低或轴突直径增加2,3(图1A),这会影响相反方向的信号传导速度4。MRI信号和基础大脑结构之间的差距对大脑结构 - behaviour映射构成了巨大挑战。我们想突出两个这样的发展:多维和多模式MRI 5。通过获取多个结构性MRI信号,每个信号反映了不同的结构组件加权总和,这些技术可以分离并测量单个结构成分,例如髓磷脂水平6,轴突直径7和细胞形态8。这些措施在功能上更相关的大脑单位,并为机械见解提供了机会。对大脑结构的另一个挑战 - 行为映射是大脑结构与行为之间的众多关系。正如Genon及其同事所指出的1所指出的那样,该领域长期以来依赖于线性结构 - 行为关系的假设。然而,最近的研究引起了人们对这一假设的怀疑,而是指向多一对一的结构 - 行为关系,称为“多重可变性”。例如,在视觉性能和视觉皮质体积之间观察到U形关系,这表明视觉性能的降解可能是由于皮质厚度增加或皮质表面表面积9的降低而导致的(图1B)。同样,网络结构和网络行为10之间存在多对一的关系。大脑结构与行为之间缺乏一对一的关系增加了采用多元和机器学习方法的重要原因。这些方法可以检查结构 - 行为关系的整个空间。这些方法的一种有希望的应用是寻找最佳的大脑结构。它提供了解决髓磷脂与轴突的比率最佳的机会,对于信号传导,白色与灰质的比例对于不同的行为领域是最佳的,以及其他概念上重要的问题。综上所述,我们认为,由于缺乏从MRI到大脑结构以及从大脑结构到行为的一对一映射,该领域受到了挑战(图1)。进步很大程度上依赖于弥合从MRI到大脑结构的差距并检查行为对大脑结构的多重实现性的能力。
12西里西亚学院医学院,罗尔纳43、40-55,波兰卡托维斯;保罗·阿尔布雷希森(Paul Albrechtsen)研究所,加拿大MB,温尼伯曼尼托巴省曼尼托巴省;加拿大MB的曼尼托巴省曼尼托巴省雷神卫生科学学院麦克斯雷迪医学院人类解剖学和细胞科学系。
审查的摘要目的预测了许多林地地区,尤其是在已经干旱和半干旱的气候中,例如美国西南部。对孔径的气孔调节是植物应对干旱的方式之一。有趣的是,与许多其他生态系统一样,美国西南部的主要物种具有不同的气孔行为,可以调节从等氢(例如PiñonPine)到芳族氢(例如PiñonPine)到芳基(例如,杜松)条件,表明与应力的niche分离或与众不同的策略可能会出现应力的niche分离策略。与氨基氢杜松相比,通常认为相对的piñon松树对干旱或更少的干燥耐受性更为敏感,尽管两种物种在干旱下都在干旱下关闭了气孔以避免水力衰竭,而在最近的爆发中,毫无疑问的是,在一个爆发中,与其他人(最多是piñon)的死亡量相比,与昆虫相比,在爆炸中却可能超过了昆虫。此外,没有明确的证据表明等征或芳烃策略会始终如一地提高用水量的效率。这些不同的气孔调节策略如何使木质物种能够承受恶劣的非生物条件,这在本综述中仍可以涵盖询问的主题。最近的发现,此贡献回顾并探讨了简化的气孔优化理论的使用,以评估光合作用和蒸腾作用如何响应温暖(H),干旱(D)以及加热和干旱(H+D),以供等亚氢和芳烃植物体验到相同的非生物压力。它阐明了如何简化的气孔优化理论可以在光合作用和液压适应中分开,这是由于非生物压力源引起的,以及如何将H+D与H或D单独使用H或D的互动效应纳入未来的气候模型中。总结此处的工作演示了如何桥接领域的数据以简化最佳原则,从而探讨了未来温度变化以及土壤水含量对具有不同用水策略的树种适应树种的影响。结果表明,测量和预测与简化的最佳原理之间的偏差可以解释不同物种的适应行为。
∗ We are grateful to Daron Acemoglu, Philippe Aghion, David Autor, Effi Benmelech, Nicholas Bloom, Carter Braxton, Julieta Caunedo, Martin Beraja, Carola Frydman, Tarek Hassan, David Hemous, Anders Humlum, Nir Jaimovich, David Lagakos, Joseba Martinez, Michael Peters, Pascual Restrepo, Jonathan Rothbaum, Miao Ben Zhang, along with seminar participants at University of Amsterdam, BI-SHoF Conference, Boston University, CIREQ Macroeconomics Conference, Columbia GSB, FIRS, Johns Hopkins, HKUST, Labor and Finance Group, NBER (EFG, PRMP, LS, PIE), Macro-Finance Society, MIT Sloan,密歇根州立大学,赖斯大学,罗切斯特大学,伦敦大学学院经济动态学会,伊利诺伊大学乌尔巴纳·尚特阿布恩大学,多伦多大学,多伦多大学,UZH Automation,Tsinghua PBC,WFA,WFA和沃顿大学的UZH工作室,以进行宝贵的讨论和反馈。我们感谢Carter Braxton,Will Cong和Jonathan Rothbaum慷慨地共享代码。Huben Liu提供了出色的研究支持。该论文先前曾以“技术,特定的人力资本和劳动力流离失所:将专利与职业联系起来的证据”标题。The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data used to produce this product (Data Management System (DMS) number: P-7503840, Disclosure Review Board (DRB) approval numbers: CBDRB-FY21-POP001-0176, CBDRB- FY22-SEHSD003-006, CBDRB-FY22-SEHSD003-023,CBDRB-FY22-SEHSD003-028,CBDRB-FY23-SEHSD003-0350,CBDRB-FY23-SEHSD003-0003-064)。
