虽然在本研究中我们模拟了经典计算机中的量子计算,但我们应该注意到量子力学测量是随机的,因此,每次评估期望值时我们都将进行1000次测量。对于每种相互作用强度,进行50次基态能量估计,并得到它们的中位数和百分位数。另外,在本研究中,我们采用了Nakanishi等人[31]提出的序贯最小优化(SMO)方法进行参数优化。SMO方法具有以下优点:收敛速度更快、对统计误差具有鲁棒性、无需超参数优化。SMO方法基于这样一个事实,即期望值表示为具有一定周期的三角函数的简单和。更多详细信息可参见参考文献[31]。
信息图被用来讨论两种不同信息测度之间的关系,如冯·诺依曼熵与误差概率[1],或冯·诺依曼熵与线性熵[2]。对于线性(L)熵和冯·诺依曼(S)熵,通常对任何有效的概率分布ρ绘制(L(ρ),S(ρ))图。这里,ρ也可以表示量子系统的密度矩阵(或者更确切地说是具有其特征值的向量),这也是本文的主要兴趣所在。我们特别关注由此产生的信息图区域的边界,其中相关的概率分布(或密度矩阵)将被表示为“极值”。在参考文献[3]中,对两个量子比特的熵进行了比较(有关离子-激光相互作用的情况,另见[4])。在 [5] 中,对任意熵对的信息图进行了详细研究。文中证明了,对于某些条件(线性、冯·诺依曼和雷尼熵满足),极值密度矩阵始终相同。文中给出了反例,但一般来说,偏差会非常小,并且可以安全地假设这些极值密度矩阵具有普适性。在本文中,我们将使用信息图来获取对称多量子系统中粒子纠缠的全局定性信息,该系统由广义“薛定谔猫”(多组分 DCAT)态(在 [6] 中首次引入,作为振荡器的双组分偶态和奇态)描述。这些 DCAT 态原来是 U(D)自旋相干(准经典)态的 ZD−12 宇称改编,它们具有弱重叠(宏观可区分)相干波包的量子叠加结构,具有有趣的量子特性。为此,我们使用一和二量子Dit 约化密度矩阵 (RDM),它是通过从由 cat 态描述的 N 个相同量子Dit 的复合系统中提取一两个粒子/原子,并追踪剩余系统获得的。众所周知(见 [3] 及其参考文献),这些 RDM 的熵提供了有关系统纠缠的信息。我们将绘制与这些 RDM 相关的信息图,并提取有关一和二量子Dit 纠缠的定性信息,以及相应 RDM 的秩,这也提供了有关原始系统纠缠的信息 [7]。我们将应用这些结果来表征 3 级全同原子 Lipkin–Meshkov–Glick 模型中发生的量子相变 (QPT),以补充 [ 8 ] 的结果。具体来说,我们已经看到,一和二量子 DIT RDM 的秩可以被视为检测 QPT 存在的离散序参量前体。本文结构如下。第 2 节回顾了信息图的概念,描述其主要属性,特别是关于秩的属性。第 3 节回顾了 U(D) 自旋相干态的概念及其 ZD−12 宇称适配版本 DCAT。在第 4 节中,我们计算了 2CAT 和 3CAT 的一和二量子 Dit RDM、它们的线性熵和冯诺依曼熵,绘制了它们并构建了相关的信息图。在第 5 节中,我们使用信息图提供有关 Lipkin–Meshkov–Glick (LMG) 模型中 QPT 的定性信息。第 6 节致力于结论。
摘要量子系统的基础状态的快速而忠实的准备是在基于量子的技术领域中的多个应用程序的具有挑战性但至关重要的任务。的消毒将允许的最大时间窗口限制为实验,以忠实地达到此类所需的状态。这在具有量子相变的系统中特别重要,其中消失的能量差距挑战了绝热的基态制备。我们表明,由在两个不同的外部可调参数下的时间演化组成的BANG-BANG协议允许在进化时间中进行高实现基态制备,而不必应用标准最佳控制技术所需的时间,例如切碎 - 常发送量子量子基量子量子量子。此外,由于它们的变量数量减少,此类BANG -BANG协议非常适合优化任务,从而降低了其他最佳控制协议的高计算成本。我们通过两个范式模型(即Landau – Zener和Lipkin – Meshkov – Glick模型)对这种方法进行基准测试。非常重要的是,我们发现后一个模型的关键基态,即其在临界点处的基态可以在总进化时间内以高填充率制备,该缩放比消失的能量差距慢。
1。Marelli AJ,Ionescu-Ittu R,Mackie AS,Guo L,Dendukuri N,KaouacheM。从2000年到2010年,普通人群中先天性心脏病的寿命患病率。循环。2014; 130(9):749-756。 2。 Dolk H,Loane M,Garne E,Eurocat工作组。 欧洲先天性心脏缺陷:患病率和围产期死亡率,2000年至2005年。。 循环。 2011; 123:841-849。 3。 Crump C,Sundquist J,Winkleby MA,Sundquist K.从婴儿期到后期的出生和死亡率时的胎龄:一项全国人群研究。 柳叶刀儿童Adolesc健康。 2019; 3(6):408-417。 4。 Chu Py,Li JS,Kosinski AS,Hornik CP,Hill KD。 早产儿25至32周胎龄的先天性心脏不适。 J Pediatr。 2017; 181:37-41。 5。 Laas E,Lelong N,Thieulin A-C等。 早产和先天性心脏缺陷:一项基于人群的研究。 儿科。 2012; 130(4):E8 29-E837。 6。 Marino BS,Lipkin PH,Newburger JW等。 先天性心脏病儿童的神经发育结果:评估和管理。 美国心脏协会的科学陈述。 循环。 2012; 126(9):1143-1172。 7。 Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。 先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。 J Pediatr Psychol。 2007; 32(5):527-541。 8。 9。2014; 130(9):749-756。2。Dolk H,Loane M,Garne E,Eurocat工作组。欧洲先天性心脏缺陷:患病率和围产期死亡率,2000年至2005年。循环。2011; 123:841-849。 3。 Crump C,Sundquist J,Winkleby MA,Sundquist K.从婴儿期到后期的出生和死亡率时的胎龄:一项全国人群研究。 柳叶刀儿童Adolesc健康。 2019; 3(6):408-417。 4。 Chu Py,Li JS,Kosinski AS,Hornik CP,Hill KD。 早产儿25至32周胎龄的先天性心脏不适。 J Pediatr。 2017; 181:37-41。 5。 Laas E,Lelong N,Thieulin A-C等。 早产和先天性心脏缺陷:一项基于人群的研究。 儿科。 2012; 130(4):E8 29-E837。 6。 Marino BS,Lipkin PH,Newburger JW等。 先天性心脏病儿童的神经发育结果:评估和管理。 美国心脏协会的科学陈述。 循环。 2012; 126(9):1143-1172。 7。 Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。 先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。 J Pediatr Psychol。 2007; 32(5):527-541。 8。 9。2011; 123:841-849。3。Crump C,Sundquist J,Winkleby MA,Sundquist K.从婴儿期到后期的出生和死亡率时的胎龄:一项全国人群研究。柳叶刀儿童Adolesc健康。2019; 3(6):408-417。4。Chu Py,Li JS,Kosinski AS,Hornik CP,Hill KD。 早产儿25至32周胎龄的先天性心脏不适。 J Pediatr。 2017; 181:37-41。 5。 Laas E,Lelong N,Thieulin A-C等。 早产和先天性心脏缺陷:一项基于人群的研究。 儿科。 2012; 130(4):E8 29-E837。 6。 Marino BS,Lipkin PH,Newburger JW等。 先天性心脏病儿童的神经发育结果:评估和管理。 美国心脏协会的科学陈述。 循环。 2012; 126(9):1143-1172。 7。 Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。 先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。 J Pediatr Psychol。 2007; 32(5):527-541。 8。 9。Chu Py,Li JS,Kosinski AS,Hornik CP,Hill KD。早产儿25至32周胎龄的先天性心脏不适。J Pediatr。2017; 181:37-41。 5。 Laas E,Lelong N,Thieulin A-C等。 早产和先天性心脏缺陷:一项基于人群的研究。 儿科。 2012; 130(4):E8 29-E837。 6。 Marino BS,Lipkin PH,Newburger JW等。 先天性心脏病儿童的神经发育结果:评估和管理。 美国心脏协会的科学陈述。 循环。 2012; 126(9):1143-1172。 7。 Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。 先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。 J Pediatr Psychol。 2007; 32(5):527-541。 8。 9。2017; 181:37-41。5。Laas E,Lelong N,Thieulin A-C等。 早产和先天性心脏缺陷:一项基于人群的研究。 儿科。 2012; 130(4):E8 29-E837。 6。 Marino BS,Lipkin PH,Newburger JW等。 先天性心脏病儿童的神经发育结果:评估和管理。 美国心脏协会的科学陈述。 循环。 2012; 126(9):1143-1172。 7。 Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。 先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。 J Pediatr Psychol。 2007; 32(5):527-541。 8。 9。Laas E,Lelong N,Thieulin A-C等。早产和先天性心脏缺陷:一项基于人群的研究。儿科。2012; 130(4):E8 29-E837。 6。 Marino BS,Lipkin PH,Newburger JW等。 先天性心脏病儿童的神经发育结果:评估和管理。 美国心脏协会的科学陈述。 循环。 2012; 126(9):1143-1172。 7。 Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。 先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。 J Pediatr Psychol。 2007; 32(5):527-541。 8。 9。2012; 130(4):E8 29-E837。6。Marino BS,Lipkin PH,Newburger JW等。先天性心脏病儿童的神经发育结果:评估和管理。美国心脏协会的科学陈述。循环。2012; 126(9):1143-1172。 7。 Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。 先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。 J Pediatr Psychol。 2007; 32(5):527-541。 8。 9。2012; 126(9):1143-1172。7。Karsdorp PA,Everaerd W,Kindt M,Mulder BJM。先天性心脏病的儿童和青少年的心理和认知功能:荟萃分析。J Pediatr Psychol。2007; 32(5):527-541。 8。 9。2007; 32(5):527-541。8。9。Pappas A,Shankaran S,Hansen Ni等。在Eunice Kennedy Shriver Nichd Nichd Neonatal Research网络中,具有先天性心脏缺陷的极低出生体重婴儿的结果。儿童核心。2012; 33(8):1415-1426。Mustafa HJ,Cross SN,Jacobs KM等。在产前诊断为先天性心脏病,特征,关联和结局的婴儿的早产。儿童核心。2020; 41(5):972-978。10。Costello JM,Pasquali SK,Jacobs JP等。新生儿心脏手术后出生和结局时的胎龄:对胸外科医生先天性心脏外科手术数据库的分析。循环。2014; 129(24):2511-2517。 11。 Costello JM,Polito A,Brown DW等。 39周之前的出生与心脏病的新生儿的结局差有关。 儿科。 2010; 126(2):277-284。 12。 Libuy N,Gilbert R,MC Grath-Lone L,Blackburn R,Etoori D,Harron K.出生时的胎龄,慢性病和学校外:一项基于人群的数据联系研究,对英格兰出生的儿童的基于人群。 int j epidemiol。 2022:DYAC105。 13。 Gilboa SM,Salemi JL,Nembhard WN,Fixler DE,CorreaA。在美国和成年人中,先天性心脏病导致的死亡率,1999年至2006年。。2014; 129(24):2511-2517。11。Costello JM,Polito A,Brown DW等。39周之前的出生与心脏病的新生儿的结局差有关。儿科。2010; 126(2):277-284。12。Libuy N,Gilbert R,MC Grath-Lone L,Blackburn R,Etoori D,Harron K.出生时的胎龄,慢性病和学校外:一项基于人群的数据联系研究,对英格兰出生的儿童的基于人群。int j epidemiol。2022:DYAC105。13。Gilboa SM,Salemi JL,Nembhard WN,Fixler DE,CorreaA。在美国和成年人中,先天性心脏病导致的死亡率,1999年至2006年。循环。2010; 122(22):2254-2263。 14。 Khairy P,Ionescu-Ittu R,Mackie AS,Abrahamowicz M,Pirote L,Marelli AJ。 改变先天性心脏病的死亡率。2010; 122(22):2254-2263。14。Khairy P,Ionescu-Ittu R,Mackie AS,Abrahamowicz M,Pirote L,Marelli AJ。改变先天性心脏病的死亡率。J Am Coll Cardiol。2010; 56(14):1149-1157。 15。 Knowles RL,Bull C,Wren C,Dezateux C.英格兰和威尔士先天性心脏缺陷的死亡率,1959 - 2009年:通过时期和出生队列分析探索技术变化。 Arch Dis Child。 2012; 97(10):861-865。 16。 纽伯格(JW)JW的tribman JK。 先天性心脏病的趋势:未来十年。 循环。 2016; 133(25):2716-2733。 17。 Olley PM,Coceani F,Bodach E. E型前列腺素:一种用于某些氰基先天性心脏畸形的新疗程。 循环。 1976; 53:728-731。2010; 56(14):1149-1157。15。Knowles RL,Bull C,Wren C,Dezateux C.英格兰和威尔士先天性心脏缺陷的死亡率,1959 - 2009年:通过时期和出生队列分析探索技术变化。Arch Dis Child。2012; 97(10):861-865。 16。 纽伯格(JW)JW的tribman JK。 先天性心脏病的趋势:未来十年。 循环。 2016; 133(25):2716-2733。 17。 Olley PM,Coceani F,Bodach E. E型前列腺素:一种用于某些氰基先天性心脏畸形的新疗程。 循环。 1976; 53:728-731。2012; 97(10):861-865。16。纽伯格(JW)JW的tribman JK。先天性心脏病的趋势:未来十年。循环。2016; 133(25):2716-2733。 17。 Olley PM,Coceani F,Bodach E. E型前列腺素:一种用于某些氰基先天性心脏畸形的新疗程。 循环。 1976; 53:728-731。2016; 133(25):2716-2733。17。Olley PM,Coceani F,Bodach E. E型前列腺素:一种用于某些氰基先天性心脏畸形的新疗程。循环。1976; 53:728-731。
贡献者的风格多种多样。20 世纪 60 年代中期,对称性游戏发展非常迅速;人们进行推测并获得了回报。那些日子似乎已经过去了,那些试图进行革命的人的贡献总体上并不十分鼓舞人心。如果没有对朴素夸克模型基础的强烈偏见,达利茨评论中的大量证据,加上米特拉的评论,将使该理论得到普遍接受。如果有人发现夸克,那将是令人信服的,但正如琼斯遗憾地总结的那样,“我怀疑大多数实验主义者认为物理夸克要么不可观察,要么不存在”。利普金关于夸克模型作为强子动力学指南的讨论很有趣,例如梅什科夫、大久保和奥弗塞斯对对称性预测与实验的各种比较也很有趣。还有关于电流代数、部分守恒轴向矢量电流 (PCAC)、无限多重态等的论文。Yodh 有一篇非常详尽的文章,介绍了对称方案预测的 E* 共振的实验情况。但人们觉得可以通过查阅粒子数据组 (免费) 的最新出版物来获取更多最新信息。COLIN WrLKIN
有关进一步的信息联系:唐纳德·汤普森(Donald Thompson)和米歇尔·哈德森(Michele Hudson),(410)786–4487或dac@ cms.hhs.gov,经营前瞻性付款,MS – DRG相对权重,工资指数,工资指数,医院地理分类,毕业生医学教育,资本医疗付款,资本医疗服务,医疗保健份额,医疗保健份额(医疗保健份额)(医疗保健份额),SCHILE SERVITIND(SCHIDARE CONSEBITION)(SCHIER)(SC),SCHIER SCHINE(SCHIER),SCHILE(SCH)(S),S)依赖Medicare的小型农村医院(MDH)计划,小批量的医院付款调整以及住院关键访问医院(CAH)问题。Emily Lipkin和Jim Mildenberger,dac@cms.hhs.gov,长期护理医院的预期支付系统和MS – LTC – DRG相对权重问题。Lily Yuan,newtech@cms.hhs.gov,新技术附加付款问题。 Mady Hue,marilu.hue@cms.hhs.gov和Andrea Hazeley,Andrea.hazeley@ cms.hhs.gov,MS – DRG分类问题。 siddhartha Mazumdar,siddhartha.mazumdar @cms.hhs.gov,农村社区医院医院示范计划问题。 Jeris Smith,Jeris.smith@cms.hhs.gov,Frontier社区健康整合项目(FCHIP)演示问题。 lang le,lang.le@cms.hhs.gov,减少医院再入院计划 - 管理问题。 Ngozi Uzokwe,Ngozi.uzokwe@ cms.hhs.gov,减少医院再入院计划 - 验证问题。 Jennifer Tate,Jennifer.tate@ cms.hhs.gov,医院获得的减少状况计划 - 管理问题。 Ngozi Uzokwe,Ngozi.uzokwe@ cms.hhs.gov,医院获得的减少状况计划 - 衡量问题。 Julia Venanzi,Julia.venanzi@ cms.hhs.gov,医院住院质量报告计划和医院价值 -Lily Yuan,newtech@cms.hhs.gov,新技术附加付款问题。Mady Hue,marilu.hue@cms.hhs.gov和Andrea Hazeley,Andrea.hazeley@ cms.hhs.gov,MS – DRG分类问题。siddhartha Mazumdar,siddhartha.mazumdar @cms.hhs.gov,农村社区医院医院示范计划问题。Jeris Smith,Jeris.smith@cms.hhs.gov,Frontier社区健康整合项目(FCHIP)演示问题。 lang le,lang.le@cms.hhs.gov,减少医院再入院计划 - 管理问题。 Ngozi Uzokwe,Ngozi.uzokwe@ cms.hhs.gov,减少医院再入院计划 - 验证问题。 Jennifer Tate,Jennifer.tate@ cms.hhs.gov,医院获得的减少状况计划 - 管理问题。 Ngozi Uzokwe,Ngozi.uzokwe@ cms.hhs.gov,医院获得的减少状况计划 - 衡量问题。 Julia Venanzi,Julia.venanzi@ cms.hhs.gov,医院住院质量报告计划和医院价值 -Jeris Smith,Jeris.smith@cms.hhs.gov,Frontier社区健康整合项目(FCHIP)演示问题。lang le,lang.le@cms.hhs.gov,减少医院再入院计划 - 管理问题。Ngozi Uzokwe,Ngozi.uzokwe@ cms.hhs.gov,减少医院再入院计划 - 验证问题。Jennifer Tate,Jennifer.tate@ cms.hhs.gov,医院获得的减少状况计划 - 管理问题。Ngozi Uzokwe,Ngozi.uzokwe@ cms.hhs.gov,医院获得的减少状况计划 - 衡量问题。Julia Venanzi,Julia.venanzi@ cms.hhs.gov,医院住院质量报告计划和医院价值 -
本概况文件概述了美国能源部先进材料和制造技术办公室 (AMMTO) 跨领域高性能材料研究、开发和演示 (RD&D) 投资机会的建议。该概况由下列人员制定:下一代材料与工艺 (NGMP) 恶劣环境材料技术经理 J. Nick Lalena;爱达荷国家实验室 (INL) 代表 Emmanuel Ohene Opare、Gabriel Oiseomoje Ilevbare 和 Anthony Dale Nickens;国家可再生能源实验室 (NREL) 代表 Kerry Rippy 和 Dennice Roberts;橡树岭国家实验室 (ORNL) 代表 William H. Peter、Amit Shyam、Sebastien N. Dryepondt 和 Yarom Polsky;太平洋西北国家实验室 (PNNL) 代表 David W. Gotthold 和 Isabella Johanna van Rooyen;以及 BGS 顾问 Stewart Wilkins。整个部门和这些国家实验室的成员都为该概况做出了重大贡献。其他贡献者包括 AMMTO 的 Alexander Kirk、Huijuan Dai、Diana Bauer 和 Chris Saldaña;AMMTO 承包商 Matt Roney 和 Dwight Tanner;核能办公室 (NE) 的 Dirk Cairnes Gallimore;汽车技术办公室 (VTO) 的 Jerry Gibbs;风能技术办公室 (WETO) 的 Tyler Christoffel;水力技术办公室 (WPTO) 的 Collin Sheppard 和 Colin Sasthav;地热技术办公室 (GTO) 的 Kevin Jones 和 Douglas Blankenship;太阳能技术办公室 (SETO) 的 Kamala Raghavan 和 Matthew Bauer;氢能和燃料电池技术办公室 (HFTO) 的 Nikkia McDonald;阿贡国家实验室 (ANL) 的 Aaron Grecco;以及国家可再生能源实验室 (NREL) 的 Shawan Sheng 和 Jonathan Keller。学术和工业界的贡献者包括博伊西州立大学的 David Estrada;科罗拉多矿业学院的 Zhenzhen Yu;西北大学的 Scott Barnett;德克萨斯 A&M 大学的 Don Lipkin;加州大学洛杉矶分校/高级研究计划署 E 项目的 Laurent Pilon;匹兹堡大学的 Albert To;田纳西大学诺克斯维尔分校的 Steven John Zinkle;弗吉尼亚大学的 Elizabeth Opila;西弗吉尼亚大学的 Shanshan Hu;阿勒格尼技术公司的 Merritt Osborne;Bayside Materials Technology 的 Doug Freitag;BWX Technologies, Inc 的 Scott Shargots 和 Joe Miller;Ceramic Tubular Products LLC 的 Jeff Halfinger;Commonwealth Fusion Systems 的 Trevor Clark;挪威船级社的 Chris Taylor;电力研究院的 David W. Gandy、Marc Albert 和 John Shingledecker;Equinor 的 Rune Godoy;Fluor 的 Gary Cannell;Free Form Fibers 的 Jeff Vervlied;通用原子公司的 Hesham Khalifa 和 Ron S. Fabibish;通用电气的 Lillie Ghobrial、Jason Mortzheim、Patrick Shower、Akane Suzuki、Shenyan Huang 和 Jason Mortzheim;哈里伯顿的 Kyris Apapiou 和 Thomas Pislak;Hatch 的 Gino de Villa;肯纳金属公司的 Paul Prichard。;林肯电气公司的 Badri Narayanan;金属粉末工业联合会的 James Adams 和 Bill Edwards;Metal Power Works 的 John Barnes;Pixelligent Technologies LLC 的 Robert J. Wiacek;雷神技术公司的 Alison Gotkin 和 Prabhjot Singh;Roboze 的 Arash Shadravan;Saferock 的 Torbjorn Vralstad;圣戈班的 John Pietras;斯伦贝谢的 Anatoly Medvedev;西门子公司的 Anand Kulkarni;钢铁贸易公司的 Doug Marmaro;泰纳瑞斯的 Gonzalo Rodriguez Jordan;巴恩斯全球顾问公司的 Kevin Slattery;Timet 的 WIlliam MacDonald;Timken Steel 的 Carly Antonucci;Ultra Safe Nuclear 的 Kurt Terrani;北德克萨斯大学的 Rajarshi Bannerje;以及福伊特水电的 Seth Smith。