一些C. J。;尤利西斯A.R.; Damis F. A。;这个K. C.在盆栽的保留和花盆中的生物膜控制。销售攻击。大象评论,第7卷,第7页。 1-15。2019。Ball,d。; Alessandris,A。; García,M。J。Beltru。 脂质同情,物理学界面的作用和这种脂肪微生物作用的分子中的作用。 《生物学杂志》,第252页,n.2,p。 131-157。 2019。 Bridier,A。; Sanch-Vizete,P。; Guilbaud,M。; Piard,J.C。; Naitali,M。; Briand,R。病原体相关的生物膜持久性。 微生物学,第45页,第45页。 167-178。 2015。 Buiate,Ana Beatriz Charce;零件lopes andrade。 Campylobbaster Biolimes spp。 生物圈百科全书。 中央大会。 女人,v.16,n.3 2019。 Carrascosa,c。; Raheem,D。; rmes,f。; Saraive,A。; Raposo,A。食品行业中的微生物拳击 - 全面复兴。 国际环境崇拜与公共卫生杂志,第18卷。 4。 2021。 Charvery,A。C. P。; Ribeiro R. A. C. Zago S。; Bonnas D.S.在联盟的加工中,微生物生物膜的格式和抗性。 饼干百科全书。 中央大会,妇女,第16页,n.3 2019。 Camargo,A。C。;伍德沃德·J·J。 Ruben C. D。; Nero L.A.粮食加工中的单核细胞促进,大陆和人类拉类:巴西场景。 病原体食品Borne,第14页,第1页。 623-636。Ball,d。; Alessandris,A。; García,M。J。Beltru。脂质同情,物理学界面的作用和这种脂肪微生物作用的分子中的作用。《生物学杂志》,第252页,n.2,p。 131-157。2019。Bridier,A。; Sanch-Vizete,P。; Guilbaud,M。; Piard,J.C。; Naitali,M。; Briand,R。病原体相关的生物膜持久性。 微生物学,第45页,第45页。 167-178。 2015。 Buiate,Ana Beatriz Charce;零件lopes andrade。 Campylobbaster Biolimes spp。 生物圈百科全书。 中央大会。 女人,v.16,n.3 2019。 Carrascosa,c。; Raheem,D。; rmes,f。; Saraive,A。; Raposo,A。食品行业中的微生物拳击 - 全面复兴。 国际环境崇拜与公共卫生杂志,第18卷。 4。 2021。 Charvery,A。C. P。; Ribeiro R. A. C. Zago S。; Bonnas D.S.在联盟的加工中,微生物生物膜的格式和抗性。 饼干百科全书。 中央大会,妇女,第16页,n.3 2019。 Camargo,A。C。;伍德沃德·J·J。 Ruben C. D。; Nero L.A.粮食加工中的单核细胞促进,大陆和人类拉类:巴西场景。 病原体食品Borne,第14页,第1页。 623-636。Bridier,A。; Sanch-Vizete,P。; Guilbaud,M。; Piard,J.C。; Naitali,M。; Briand,R。病原体相关的生物膜持久性。微生物学,第45页,第45页。 167-178。2015。Buiate,Ana Beatriz Charce;零件lopes andrade。 Campylobbaster Biolimes spp。 生物圈百科全书。 中央大会。 女人,v.16,n.3 2019。 Carrascosa,c。; Raheem,D。; rmes,f。; Saraive,A。; Raposo,A。食品行业中的微生物拳击 - 全面复兴。 国际环境崇拜与公共卫生杂志,第18卷。 4。 2021。 Charvery,A。C. P。; Ribeiro R. A. C. Zago S。; Bonnas D.S.在联盟的加工中,微生物生物膜的格式和抗性。 饼干百科全书。 中央大会,妇女,第16页,n.3 2019。 Camargo,A。C。;伍德沃德·J·J。 Ruben C. D。; Nero L.A.粮食加工中的单核细胞促进,大陆和人类拉类:巴西场景。 病原体食品Borne,第14页,第1页。 623-636。Buiate,Ana Beatriz Charce;零件lopes andrade。Campylobbaster Biolimes spp。生物圈百科全书。中央大会。女人,v.16,n.32019。Carrascosa,c。; Raheem,D。; rmes,f。; Saraive,A。; Raposo,A。食品行业中的微生物拳击 - 全面复兴。国际环境崇拜与公共卫生杂志,第18卷。 4。2021。Charvery,A。C. P。; Ribeiro R. A. C. Zago S。; Bonnas D.S.在联盟的加工中,微生物生物膜的格式和抗性。饼干百科全书。中央大会,妇女,第16页,n.32019。Camargo,A。C。;伍德沃德·J·J。 Ruben C. D。; Nero L.A.粮食加工中的单核细胞促进,大陆和人类拉类:巴西场景。病原体食品Borne,第14页,第1页。 623-636。2017。Capelletti,R。V.生物膜中的杀生物活性评估
本研究评估了批量洗涤臭氧卫生系统(BWOSS)和喷雾清洗臭氧卫生系统(SWOSS)对单核细胞增生液(两种菌株)和沙门氏菌Enterica subsp的效率。enterica(三种血清射击),通常用于伴侣动物(例如狗和猫)的生肉饮食(RMBD)。生产在室温下持续2小时,或在-20°C下冷冻,然后在4°C下过夜,以模拟在臭氧处理之前的原始宠物食品加工操作(“冻结”)的预处理步骤。在Bwoss施用20 s或60 s的两个臭氧浓度(0和5 ppm),施用20 s。基于ANOVA,BWOSS数据显示,每种产品类型的所有处理持续时间均在0到5 ppm臭氧浓度之间微生物降低的微生物降低没有显着差异(P> 0.05)。bwoss导致平均微生物减少高达1.56 log cfu/ml,具体取决于治疗时间和产生类型。累积数据。与0 ppm臭氧(p = 0.0013)相比,用汗水进行冻结的冻结产物的细菌原木还原较高,而羊毛处理的室温却没有显示出臭氧浓度之间微生物减少的明显差异。在肿胀治疗期间还研究了减轻微生物交叉污染的潜力。结果表明,5 ppm臭氧在RINSATE和近端表面中的病原体减少了0.63 - 1.66 log CFU/ml比没有病原体和样品的臭氧大于臭氧。总体而言,这项研究的数据表明,与Bwoss相比,与BWOSS相比,肿块在减少根块茎表面的微生物载荷和冻结和融化的壁球上会更有效,并有可能减轻RMDB制造环境中的交叉污染。
产品描述Zymobiomics®微生物社区标准是一个模拟微生物群落,由八个细菌和两种真菌菌株组成。它包括三种易于溶解的革兰氏阴性细菌(例如大肠杆菌),五种很难透明的革兰氏阳性细菌(例如单核细胞增生李斯特菌)和两种难以散热的酵母(例如Neoformans的加密环球)(表1)。这些菌株中的七个是已知的人类病原体,并已用DNA/RNA Shield™(R1100-50)完全灭活。包含的基因组的GC含量1覆盖范围从15%到85%。该标准是通过汇总十种微生物菌株的纯培养物来构建的。在合并之前对每个纯培养物的细胞和DNA含量进行了定量。根据预定的组成混合培养物(表1)。微生物标准是准确表征的,并保证包含<0.01%的杂质。这使其可以用于暴露微生物学或宏基因组工作流中的人工制品,错误和偏见。从一开始就用作定义的输入,该标准可用于指导整个工作流程的构建和优化,或作为LAB研究间研究的质量控制工具。使用该标准进行基准测试,我们发现该领域中当前使用的大多数引用的DNA提取方法,包括人类微生物组项目粪便DNA提取方案,都是巨大的偏见(图1)。可以在表2中找到有关十种微生物菌株(包括物种名称,基因组大小,平均GC含量,16S/18S拷贝数,系统发育)的详细信息。这些菌株2的16S/18S rRNA序列(FASTA格式)和基因组(FASTA格式)可从下面的链接中获得。,如果我们可以帮助分析此标准生成的测序数据,请随时与我们联系。参考基因组下载:https://zymo-files.s3.amazonaws.com/biopool/zymobiomics.std.refseq.v3.zip。1 GC内容可能会导致基于PCR的库中shot弹枪测序工作流程中测序覆盖范围的偏差。2标准内的几种菌株被从ZRC190633开始的类似菌株取代。此更新不会影响标准的物种组成。请参阅附录C以检查您的产品是否来自较旧的批次,并在需要时找到正确使用的参考数据库。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
替代品牌名称:Profect®256Profect®256 - 中性消毒剂 - 免费Profect®256Super HDQSimpleifill®中性256Simplifill®256 - 中性消毒剂 - 免费香料Simplance®Supperifill®SuperHDQ(请注意,EPA:以下陈述:以下陈述是可用于Go®XX的清洁剂,可用于Sparters Sparters spartans spartan。简化®XX简化®分配使简单的浓缩物与SpartanSimplifill®ChicelManagement系统一起使用,每日清洁剂使用消毒剂(注:EPA:以下营销主张是可选的) - 用作一级,医院的毒药,毒ructi剂,毒ruciged剂*,降低剂量,脱氧化剂,不适合使用。- [产品名称]是(一步1)(pH中性配方)医疗保健消毒剂,可在功效表中提供有效的性能,以对{插入病原体}。- 使用[产品名称],作为整个设施简单有效的清洁和消毒计划的一部分。- [产品名称]是一种pH中性配方,旨在为[插入使用站点]提供有效的清洁,除臭和消毒。- 使用[产品名称],用于所有一步1的消毒,除臭和清洁需求。- (此产品或产品名称)在一个节省劳动的步骤1中消毒,清洁和除臭。- 速度为½fl。oz。每加仑*** -2分钟消毒9个活动!*** -Sanitizes 9 in 120 Seconds *** -Bactericide/Virucide*/Mildewcide -Effective against Antibiotic-Resistant Bacteria** -Effective against a broad spectrum of bacteria (such as {insert bacteria from efficacy table}) -Kills 99.9% of bacteria*** (in 120 seconds or 2 minutes) 9 .-kills在坚硬的非孔非食品接触表面上(2分钟或120秒)上的细菌*** 99.9%。-kills铜绿假单胞菌,金黄色葡萄球菌,沙门氏菌肠,大肠杆菌O157:H7,-Klebsiella pneumoniae(NDM -1)和李斯特菌单核细胞基因。-kills {从功效表中插入病原体} -kills丙型肝炎病毒(HCV),丙型肝炎病毒(HBV),HIV -1(AIDS病毒),流感病毒和流感病毒和流感B病毒,在硬,非孢子,非孢子的无态表面上。- 从功效表中插入病原体}-profect®-simplifill® -sanitize saNITISS 2,3(在10分钟内) - 用于在[插入软表面] [插入使用位点]中使用。3-精选 - 或 - 去除 - 或 - 在{insert inter Site section}的{插入使用位点}中的{插入软表面}的软表面上的细菌的99.9%}。2,3-会议的表面消毒建议建议OSHA的血源性病原体标准 - 与微纤维布一起使用 - 理想的体育馆 - 和/OR- Health Clubs-和/Or-健康中心
•Gene-Up®Typer是一种实时PCR*溶液,结合了一个生物的快速应变表征,其第一个版本的Gene-Up®TyperLMO靶向李斯特菌单核细胞增生。•该解决方案有助于快速识别污染的根本原因,并加快决策过程以减轻并避免将来复发。•该自动化系统以其速度,易用性和精度为病原体检测市场提供了最先进的解决方案。Marcy-l'étoile(法国),2025年2月13日 - BioMérieux,BioMérieux是体外诊断领域的世界领导者,今天宣布推出Gene-up®Typer,这是一种实时PCR解决方案,用于食品行业的快速根本原因分析。每年,估计有6亿人在食用被污染的食物后生病。这些事件不仅构成了严重的健康风险,而且会导致昂贵的召回和对食品行业的声誉损失。尽管进行了严格的监测和控制措施,但仍会发生污染。通过使用根本原因分析解决方案,食品行业可以确定过程中的细分并采取有效的纠正措施,以更好地防止未来的污染。gene-up®Typer是一种实时PCR解决方案,用于微生物的快速应变表征,用于BioMérieux的Gene-Up®系统。这种易于使用的自动食品病原体检测解决方案通过提供更快的有关应变身份的见解,有助于加快决策过程。在常规测试中检测到病原体并在样品中分离菌株后,将DNA提取并用Gene-Up®Typer特异性测定法进行扩增。然后将Gene-Up®仪器产生的分析结果转移到增强DX Web应用程序中。由机器学习提供动力,该机器学习将尖端算法与嵌入在全面的基因组数据库中的多年专业知识相结合,Gene-up®Typer定义了一个独特的地址,将菌株和组相同的菌株识别为“群集”。然后,Web应用程序逐步构建了工厂中存在的应变簇的历史记录,从而可以追溯污染的来源,以改善对生产过程的控制。“在工业应用方面拥有30多年的专业知识,BioMérieux继续大力投资于破坏性的科学技术,以帮助食品加工行业与他们快速变化的环境保持同步。使用Gene-up®Typer,我们为市场带来了一种创新的解决方案,能够通过基因组学和数据利用来快速识别根本原因,并参与了集体努力,以使世界成为更健康的地方并抗击粮食不安全感。与我们的合作伙伴MérieuxNutrisciences,我们共享相同的重塑食品安全景观的意图,并设置增强
*通讯作者:mitikuguya@yahoo.com摘要该研究旨在评估吉拉尔·贾索(Girar Jarso)地区城市和城市地区的乳制品生产商和收集中心收集的生牛奶的质量和安全性。收集了总共60种牛奶样品(牛奶生产者40个,从牛奶收集器中收集了20个牛奶样品),以进行物理化学和微生物质量和安全分析。分析是在Holetta农业研究中心的乳制技术和微生物学实验室进行的。温度(29.75±0.52和22.35±0.52°C)存在显着差异(p <0.05),pH(6.69±0.02和6.55±0.02),比重(1.026±0.002和1.026±0.002和1.023±0.002)和脂肪含量(4.02±0.002)和4.02±0.14%和3.5±±±±±±±±±±±±±±±±±±0.14%,样品分别。对于从生产商那里收集的牛奶样品的平均总需氧性细菌计数(TAMBC),大肠菌数(CC)和形成细菌计数的孢子分别为6.42±0.07,4.49±0.09和2.59±0.09±0.09±0.05±0.05 log10 cfu/ml。然而,从牛奶收集器(7.49 log10 cfu/ml)采集的牛奶样品中观察到的细菌计数明显高于生产者牛奶样品(6.42 log10 cfu/ml)。从生产者收集的总牛奶样品中,金黄色葡萄球菌,沙门氏菌属的阳性为57%,7.5%和15%。和单核细胞增生李斯特菌。在研究区域中生产和销售的牛奶的微生物质量被发现不合格,可能会对原始牛奶消费者造成公共卫生风险。关键字:生牛奶,微生物质量,物理化学,安全性。这需要为牛奶生产商和收藏家建立和实施质量和安全控制系统,以提高牛奶的质量和安全性。引言牛奶和牛奶产品是如果无法正确处理,牛奶和牛奶产品是各种微生物繁殖的理想培养基(Soomro等,2002)。来自健康动物的新鲜牛奶中的大多数细菌是无害或有益的。动物或牛奶处理剂的健康状况,或受污染的水,污垢,肥料害虫,割伤和伤口的污染物可能使生牛奶可能危险(Zelalem Yilma,2012)。影响乳制品质量和安全性的主要决定因素是原乳的质量。因此,牛奶应具有正常的成分,不含掺假,必须在卫生条件下产生(Chamberlain,1990)。
由各种细胞内病原体(如病毒、某些细菌、真菌和原生动物寄生虫)引起的传染病是全世界的主要健康威胁。特别是结核分枝杆菌、疟原虫和艾滋病毒(分别是结核病 (TB)、疟疾和艾滋病的病原体),感染了超过四分之一的世界人口,每年导致超过 200 万人死亡 [1–3]。此外,许多其他细胞内病原体如利什曼原虫、肠道沙门氏菌、单核细胞增生李斯特菌、脑膜炎奈瑟菌、沙眼衣原体和病毒也表现出严重的健康风险。另外,人们越来越认识到,许多被认为是细胞外的细菌也可以在细胞内繁殖或存活 [4]。细胞内病原体可以利用各种逃逸机制避免被宿主免疫系统消灭,并可以建立持续性感染 [5]。由于药物无法有效转运到宿主细胞,因此这些疾病的治疗具有挑战性。这些感染通常需要较长时间使用高剂量的抗菌剂进行治疗,这可能会伴有严重的副作用和产生耐药性的风险。为了克服这些挑战,需要制定策略来确保治疗化合物能够到达目标部位。许多微生物都开发出成功的策略来入侵宿主,同时逃避宿主的免疫力。令人惊讶的是,几种病原体选择了一种极端的环境来生存:单核吞噬细胞 [5 , 6] 。基于此,针对大多数细胞内病原体的药物输送的一个关键目标是单核吞噬细胞。单核吞噬细胞系统 (MPS) 的细胞,例如单核细胞、巨噬细胞和树突状细胞,是抗菌防御最有效的细胞类型。在某些情况下,中性粒细胞、成纤维细胞或上皮细胞也可以作为细胞内病原体的栖息地。大多数胞内细菌仍留在宿主细胞的内吞或吞噬泡中,它们会重新编程以提供理想的生存环境,而其他细菌则进入胞质溶胶 [4, 5]。为了到达细胞内病原体的储存器,已经开发出各种纳米载体。聚合物纳米颗粒、纳米胶囊、胶束、树枝状聚合物、纳米凝胶、脂质体、固体脂质纳米颗粒、无机纳米载体等被引入作为有前途的药物递送系统。抗菌剂可以通过物理封装、吸附或化学结合的方式加载到纳米载体中。与游离药物相比,纳米载体系统的主要优势是提高生物利用度、保护包埋药物免于失活、控制药物释放、减少给药剂量以及因此减少相关的毒副作用和给药频率。重要的是,使用纳米载体,可以通过被动积累或使用特定配体主动靶向来靶向宿主细胞或感染部位 [7、8]。由于这些细胞对吞噬细胞颗粒具有天然倾向,因此通过纳米载体被动靶向 MPS 中的宿主细胞是一种突出的选择。此外,可以通过改变纳米载体的尺寸、电荷、刚性或形状等特性来增强 MPS 的吸收。调理作用也促进了 MPS 的吞噬作用。纳米载体在 MPS 中快速积累对抗细胞内病原体是一个优势,而
各种生物,包括细菌,生物,真菌,植物和动物,分泌蛋白质和肽,它们自组成为有序的淀粉样蛋白纤维,从而执行不同的生理功能。在有关微生物功能性淀粉样蛋白的本期特刊中,Balistreri等。对已知功能性淀粉样蛋白及其广泛的功能进行了全面的综述,这可能仅代表对蛋白质的实际数量和活性的预测,这些蛋白质和活性在生活的所有王国中自组装成淀粉样蛋白[1]。作者全面地描述了通过高度精心策划的组件参与有毒活性的微生物淀粉样蛋白,重点是大肠杆菌和铜绿假单胞菌铜绿和酵母prions。ÁLVAREZ-MENA等。使我们更深入地了解革兰氏阳性细菌分泌的淀粉样蛋白的多功能性,包括链霉菌,葡萄球菌,葡萄球菌,链球菌突变,spp。[2]。淀粉样蛋白作为微生物中的关键毒力因子的功能使它们成为旨在发现新型抗臭虫疗法的结构表征的有吸引力的候选者。与涉及神经退行性和全身性疾病的真核淀粉样蛋白的广泛信息相反,机械,功能和高分辨率结构信息有关微生物淀粉样蛋白的结构信息仅适用于非常特殊的系统。[4]。这两项研究都集中在非常不同的淀粉样蛋白系统上,独立观察到响应环境变化的纯净的调节。[2])。本期特刊中的研究论文揭示了来自金黄色葡萄球菌(Zaman和Andreasen)[3]的毒性淀粉样蛋白肽的新特性以及枯草芽孢杆菌中主要的蛋白质纤维生物纤维成分(Ghrayeb等人)Zaman和An-dreasen发现了金黄色葡萄球菌可溶蛋白(PSMS)的聚集动力学和纤维形态的显着pH依赖性。这种条件特定的行为可以调节并在不同的角色之间进行调整并切换,包括细胞毒素,抗菌剂和生物膜结构。Ghrayeb等。表明,在中性或酸性pHs生长时,天然枯草芽孢杆菌TASA形成非常不同的超分子形态,这也取决于蛋白质和盐的浓度的变化[4]。不同的纤维形态可能会在生物膜中编码不同的功能作用。pH变化也可以用于在有毒淀粉样蛋白的储存和活性之间切换,如单核细胞增生李斯特氏菌(ÁLVAREZ-MENA等人。最近使用低温电子显微镜(Cryo-EM)确定了TASA纤维的高分辨率结构,揭示了与典型淀粉样蛋白不同但具有β-片含量丰富的拟张形态的纤维。人类淀粉样蛋白通常由垂直于纤维轴堆叠的分子形成,以形成跨β纤维中的成对β-片。相比之下,tasa纤维由由供体 - 斯特兰德交换组装的折叠单体组成,每个亚基捐赠了β-链条以完成下一个亚基的折叠沿纤维[5]。
罗克维尔,马里兰州和纽约,纽约,2024年7月31日 - OS疗法(“ OS疗法”或“ Company”)(NYSE:OSTX),一种抗体药物结合物(ADC)(ADC)(ADC)和免疫疗法研究和临床阶段阶段的生物手术公司,今天宣布了公共公共公共产品的价格公共公共公共产品$ $ 4. $ $ 000,000 00,000 00,000 00,000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 00,000 00,000 00,000 000 000 000 00,000 00,000 000 00,000 000 000 00,000 000 000 000年,股份增加了640万美元的总收益。此外,该公司还授予了承销商的45天期权,以公开发行价格,更少的承销折扣和佣金购买多达240,000股普通股,以覆盖过度分配(如果有)。扣除了承保折扣和佣金后,净收益是在公司应付支付的估计支出之前,预计将约为600万美元。该公司打算从产品中使用净收益来推进其产品候选者的临床开发 - OST-HER2和OST-TADC,并发现和开发新产品候选者,以及营运资金和其他一般公司目的。OS疗法的铅产品候选OST-HER2是一种创新的免疫疗法,使用HER2生物工程形式的单核细胞增生李斯特菌(LM),以触发对表达HER2的癌细胞的强烈免疫反应。这种现成的治疗旨在防止转移,延迟复发,杀死表达HER2的原发性肿瘤并增加总体生存率。OST-HER2已从食品药品监督管理局(FDA)(FDA)获得了罕见的儿科疾病名称(RPDD),以及FDA和欧洲药品局(EMA)的快速轨道和孤儿名称。目前,该公司已完全招募了一项重复的IIB期临床试验,该试验已切除,切除的骨肉瘤,在美国的21个临床试验地点对41例OST-HER2患者给予了OST-HER2患者,预计在2024年6月发布了临时数据后,预计将在2024年第四季度进行Topline数据。OS疗法正在基于其IIB期临床试验的数据,从FDA寻求骨肉瘤的OST-HER2的突破疗法指定。在Osteosarcoma中FDA的OST-HER2的任何生物制剂许可授权(BLA)上,该公司将根据RPDD获得优先审查凭证。OST HER2还完成了一项主要在乳腺癌患者中的1期临床试验,除了强有力的临床前数据表明,在独立的基础上证明了功效并与Her2靶向的治疗性抗体(如Herceptin®)结合使用。OS疗法也正在开发OST-TADC,这是一种专有的下一代抗体偶联物(ADC)平台。这项先进的技术结合了pH敏感的硅连接器和涂层,并被商标为Silinkers™,可以在肿瘤微环境中选择性地释放多种治疗剂,该疗法的pH值低于身体的其余部分。这种方法旨在最大程度地提高治疗作用,同时最大程度地减少对健康细胞的损害。OS疗法已在癌症的各种鼠模型中完成了最初的安全性和功效概念证明。
