摘要。锂离子存储设备的开发使纳米结构化材料具有巨大的表面积,孔隙率和增强的反应性,这是一个关键的研究领域。这些特殊的特质允许新型的活动过程,缩短锂离子的传输距离,降低特定的表面电流密度,并显着增强电池恒定和特定能力。此外,通过降低具有集成电子导电通道的复合纳米结构,即使在高电荷和放电速率下也可以提高特定能力。在锂离子存储中雇用纳米材料电极可提供能量密度,功率输出,周期寿命或这些优势的任何优势的能源密度,电力输出,循环寿命或从电池单位上的任何优势组合的变化。纳米颗粒或纳米粉电极材料(例如传统微米大小的粉末的超细变体)是该区域中第一个纳米技术应用的主题。由于其导电品质,Carbon Black是锂离子电池中最早使用的纳米材料之一,自该技术创建以来就一直使用。本研究将检查纳米材料是否会影响锂离子电池的寿命和性能,并重点介绍了这些切割材料改善电池寿命和性能的方式。
带有质谱(GC/MS)的气相色谱法是识别多种气体和挥发性有机成分的金标准技术。色谱分离后,质谱仪将分子成分分解为片段离子的特征模式。使用商业光谱数据库和解释确定了这些模式,而不严格依赖历史色谱数据的内部库。质谱的另一个好处是,方法修改不会影响识别组件的能力,因此可以优化一般方法以更好地靶向一个或多个组件。该技术的局限性包括GC/MS无法检测氢或氟化物气体的能力,以及对定量分析的可靠性的可能担忧。
固体电解质界面 (SEI) 是锂电池耐久性的关键,也与锂离子以外的多价电池有关。它的稳定性对于确保电池的高效运行至关重要,尤其是在电动汽车和高容量固定式储能系统等苛刻的环境中。不稳定的 SEI 会导致电池快速退化、容量损失和潜在的安全问题。我们的主要关注点是 SEI 的稳定性。感兴趣的主题包括但不限于以下内容:- 固体电解质界面 (SEI) - 锂电池 - 多价电池 - SEI 稳定性 - 电极-电解质界面 - 电解质添加剂 - 电化学技术 - 锂电镀 - 固态锂电池
对可持续能源解决方案的需求不断增长,将锂电池回收行业定位在全球创新和经济转型的最前沿。随着电动汽车,可再生能源存储和消费电子产品的增加,回收锂离子电池已成为解决资源稀缺和环境挑战的关键解决方案。认识到需要对这个迅速发展的行业进行全面分析,CAS和Deloitte共同努力开发了这份涵盖市场和科学观点的深入报告。作为美国化学学会的一个部门,专门从事科学知识管理,CAS提供了无与伦比的科学和技术专业知识,不断构建尖端信息解决方案和CAS Content Collection™,涵盖了超过150年的发现。Deloitte以其市场和业务分析而闻名,对行业动态和竞争力提供了深刻的了解。一起,我们的科学深度和业务敏锐度使我们能够对锂离子电池回收行业进行整体探索。本报告展示了这种独特的合作使理解和洞察力的深度和质量。通过利用CAS和Deloitte的综合优势,我们旨在提供可行的见解和解决方案,以应对当今的紧迫挑战并塑造明天的创新。对诸如药物开发,新材料,绿色能源或可持续性等关键领域的全面分析感兴趣?与我们联系。
对可持续能源解决方案的需求不断增长,将锂电池回收行业定位在全球创新和经济转型的最前沿。随着电动汽车,可再生能源存储和消费电子产品的增加,回收锂离子电池已成为解决资源稀缺和环境挑战的关键解决方案。认识到需要对这个迅速发展的行业进行全面分析,CAS和Deloitte共同努力开发了这份涵盖市场和科学观点的深入报告。作为美国化学学会的一个部门,专门从事科学知识管理,CAS提供了无与伦比的科学和技术专业知识,不断构建尖端信息解决方案和CAS Content Collection™,涵盖了超过150年的发现。Deloitte以其市场和业务分析而闻名,对行业动态和竞争力提供了深刻的了解。一起,我们的科学深度和业务敏锐度使我们能够对锂离子电池回收行业进行整体探索。本报告展示了这种独特的合作使理解和洞察力的深度和质量。通过利用CAS和Deloitte的综合优势,我们旨在提供可行的见解和解决方案,以应对当今的紧迫挑战并塑造明天的创新。对诸如药物开发,新材料,绿色能源或可持续性等关键领域的全面分析感兴趣?与我们联系。
1。需求:进行了市场分析以确定需求。2。方法:解释了满足确定需求的独特方法。3。益处:通过生命周期评估(LCA)(LCA)的技术经济评估(TEA)和环境影响评估用于确定主要的好处和其他比较方面。4。竞争:讨论了欧盟和SA中的竞争力量。
此版本包含“前瞻性信息”,该信息基于公司的期望,估计和预测,截至发表声明之日起。此前瞻性信息包括有关研究的陈述,包括公司的业务策略,计划,发展,目标,绩效,展望,增长,现金流,预测,目标和期望。通常,可以通过使用前瞻性术语(例如“ Outlook”,“预期”,“ Project”,“ Project”,“目标”,“可能”,“相信”,“估计”,“期望”,“预期”,“ MAY”,“ MAY”,“可能”,“可能”,“可能的”,“'',''','','','','',''阅读本新闻稿的人警告说,此类陈述仅是预测,并且公司的实际结果或绩效可能会大不相同。前瞻性信息受到已知和未知的风险,不确定性和其他因素,这些风险可能会导致公司的实际结果,活动水平,绩效或成就与此类前瞻性信息所表达或暗示的因素有实质性不同。此列表并不详细地影响可能影响我们前瞻性信息的因素。应仔细考虑这些因素和其他因素,读者不应过分依赖前瞻性信息是根据有关此类风险,不确定性和其他因素的假设开发的,包括但不限于一般业务,经济,竞争,政治和社会不确定性;当前发展活动的实际结果;经济评估的结论;随着计划继续完善的项目参数的变化;金属的未来价格;植物,设备或工艺无法按预期运行;化学工业的事故,劳资纠纷和其他风险;并延迟获得政府批准,融资或完成开发或建筑活动的延迟。
摘要 非洲农村地区的社会经济发展离不开适当的基础设施。而其中的关键就是电气化。尽管有各种国家和国际活动和扩展计划,以及各种各样的参与者,但这些活动的实施进展缓慢。为了向偏远地区供电,近年来离网系统技术变得越来越普遍。在本文中,我们将介绍使用光伏系统与 85kWh 二次锂离子电池 (LIB) 结合作为离网混合系统为坦桑尼亚维多利亚湖的一个岛屿供电作为社会经济案例研究。该离网混合系统每天平均能够提供 42.31kWh 的能源,项目中成功连接的关键基础设施(如当地医院和学校)的每日需求量为 18.75kWh。规模年产量为 15,443.16kWh,足以为私人家庭以及当地渔业提供电力供应。假设预期寿命为 15 年,所述系统从第 4 年开始摊销。此外,考虑到全球电动汽车的快速发展和二手锂离子电池的预期回报,该项目还应成为电池的二次生命场景。与传统柴油发电机解决方案相比,经济和生态评估表明使用二次生命锂离子电池是一种解决方案。评估中包括对健康方面的考虑。
锂离子电池广泛用于各种消费和工业应用,包括智能手机、笔记本电脑、电动汽车和可再生能源存储系统。随着对这些电池的需求不断增长,对有效回收方法来管理报废电池的需求也在不断增长。锂离子电池回收涉及回收和再利用电池中所含的有价值材料,减少对新资源的需求,并最大限度地减少废弃电池对环境的影响。本期特刊邀请研究人员就锂离子电池回收先进技术的发展撰写原创研究/评论/观点文章。感兴趣的主题包括但不限于:- 直接回收(例如,直接回收和升级再造
摘要这项工作研究了双相锂锂(LTO)/TIO 2纳米线作为锂电池阳极的稳定性。双相LTO/ TIO 2纳米线在80°C下的两个时代静脉片段成功合成了10、24和48 h。SEM图像显示,双相LTO/TIO 2的形态是直径约为100-200 nm的纳米线。XRD分析结果表明纳米线的主要成分是解剖酶(TIO 2)和尖晶石LI 4 Ti 5 O 12。LTO/TIO 2 -10,LTO/TIO 2 -24和LTO/TIO 2 -48的第一个排放特异性能力分别为181.68、175.29和154.30 mAh/g。在速率容量测试后,LTO/TIO 2 -10,LTO/TIO 2 -24和LTO/TIO 2 -48分别保持在161.25、165.25和152.53 mAh/g。每个样本的保留量为86.71%,92.86和89.79%。基于电化学性能的结果,LTO含量增加有助于提高样品循环稳定性。然而,延长的静态时间也产生了杂质,从而降低了循环稳定性。