结构电池是多功能设备,可以同时存储能量并承载机械负载。关键成分是碳纤维,它不仅充当结构增强,而且还可以通过可逆地托管利离子作为电极。仍然对LI和碳纤维相互作用知之甚少。在这里,我们绘制了用螺旋丙烯腈纤维插入的LI插入螺旋晶纤维中的螺旋纤维纤维(AES)。我们表明,在充电/放电速率的缓慢/放电速率下,LI在纤维的横向和纵向方向上均匀分布,并且在完全放电时,所有LI实际上都被排出。以快速的速度,LI倾向于将其捕获在纤维的核心中。在某些纤维中,在固体电解质相(SEI)和纤维表面之间发现LI板。我们的发现可以指导AES分析锂离子电池的其他碳质电极材料,并用于改善结构电池的穿孔。
引言锂离子电池因其出色的能量密度、工作电压、循环寿命和自放电率而成为便携式电子设备的首选。为了提高性能和安全性,开发用于电动/混合动力汽车和储能系统的创新型电池组件至关重要 [1]。目前,大多数商用锂离子电池使用微孔聚烯烃膜作为隔膜,因为它们具有电化学稳定性和机械强度。然而,这些膜具有孔隙率低和电解质润湿性差等局限性,这会对电池的性能产生负面影响。此外,微孔聚烯烃膜在高温下表现出高热收缩率,这引发了安全问题 [2-4]。*通讯作者。电子邮件:m.javaheri@merc.ac.ir
对这些类型材料的潜在理化特性的深入了解将是成功实现其最终技术应用的关键组成部分。在电池运行过程中(在锂离子插入/脱氧反应期间)中电极中发生的结构变化的知识将是最重要的重要性,即捕获控制电池性能的相关结构 - 托管关系。特别是,组成OEM的分子和固态结构直接与影响岩性反应热力学的几种关键特性相关,例如锂离子配位环境,电子结构或反应动力学。此外,已知通过不同的机制[17]发生锂离子插入过程,从而导致电极材料的不同现象,例如相位分离和/或亚稳态相的出现。在前一种情况下,在静电期间没有出现稳定的中间阶段,因此导致了非步骤的过程。已知这种现象是针对几种无机性Lib阴极发生的,例如Li n fepo 4
1 华盛顿大学物理系,华盛顿州西雅图 98195-1560,美国 2 太平洋西北国家实验室环境分子科学实验室,华盛顿州里奇兰 99354,美国 3 纽约州立大学宾汉姆顿大学物理系,纽约州宾汉姆顿 13850,美国 4 纽约州立大学宾汉姆顿大学材料科学与工程系,纽约州宾汉姆顿 13850,美国 5 纽约州立大学宾汉姆顿大学东北化学能存储中心,纽约州宾汉姆顿 13850,美国 6 阿贡国家实验室化学科学与工程部,伊利诺伊州莱蒙特 60439,美国 摘要 我们报告了电化学序列 ε-VOPO 4 、ε-LiVOPO 4 、 ε-Li 2 VOPO 4 和参考氧化物 V 2 O 3 、VO 2 和 V 2 O 5 。在对这些结果的分析中,我们建立了一个研究化学键的框架,该框架通常适用于广泛的系统,包括复杂的扩展无机化合物。虽然后一种方式在许多优秀的催化研究中的应用不如金属酶等,但我们表明该技术在以材料为中心的储能研究中具有很高的实用性。这里详细讨论了对局部原子结构和杂化方案的敏感性。同样,锂化对氧化、离域和配体价能级偏移的影响在分析结果中都很明显。最后,TDDFT 投影清楚地揭示了每个钒位点价带的方向依赖性。我们的结果表明,实验室 X 射线光谱仪器是获得 3d 过渡金属无机化合物的良好分辨率 VTC-XES 特征的可行途径,即使对于数量有限或对大气敏感的样品也是如此。实验结果与实空间格林函数和时间相关密度泛函理论 (TDDFT) 方法分别产生的结果非常一致。因此,我们提出,如果配备适当的理论支持,VTC-XES 可以成为 X 射线吸收前边缘特征的宝贵补充,以更详细地表征化合物的电子结构。我们预计类似的分析将在广泛的材料化学研究中得到应用,并提供基础和应用见解。(ж)evan.jahrman@nist.gov - 作者目前在马里兰州盖瑟斯堡的国家标准与技术研究所工作;(†)niri.govind@pnnl.gov;(‡)seidler@uw.edu