4 perry.banks@ontoinnovation.com,5 aries.peng@ontoinnovation.com摘要 - 对异质整合的需求不断增长,由5G市场驱动,其中包括智能手机,数据中心,服务器,HPC,HPC,AI,AI和IOT应用程序。下一代包装技术需要更严重的覆盖层,以适应更大的包装尺寸,并在大格式柔性面板上使用更精细的螺距芯片互连。异质集成通过将多个硅节点和设计组合在一个软件包中,从而实现了下一代设备性能。包装尺寸预计将显着增长,在未来几年内增加到75 x 75毫米和150 x 150毫米。对于这些要求,具有精细分辨率光刻的极大的曝光场将使包装超过250 x 250毫米,而无需图像缝制,同时超过了这些包装的侵略性叠加和临界均匀性要求。满足异质整合需求的光刻挑战是市场上当前可用解决方案的暴露场大小的限制。使用缝合的多次镜头,这不仅影响生产力性能,而且会影响缝合边界处的潜在产量损失。应对上述关键光刻挑战成为异质整合的重要任务,而具有精细分辨率光刻的极大的暴露场是完成此任务的最佳解决方案之一。在本文中,选择了一个515 mm x 510 mm面板作为测试工具,我们将在此面板上展示一个具有精细分辨率技术的非常大的曝光场。此演示提供了有关该新技术将如何应对大型包装尺寸流程的挑战的结果和详细信息。关键字,预先包装,高级IC底物,大型曝光字段,精细分辨率,面板级包装,异质,覆盖,覆盖,缝线,吞吐量。
chair : Said Rodriguez 08.45 I 04 Natalia Berloff (Applied Mathematics and Theoretical Physics, University of Cambridge, United Kingdom) “Gain-based computing with coupled light-matter systems” 09.30 Short talks O 11 Stan de Lange (Advanced Research Center for Nanolithography, ARCNL) “Modeling the hundreds-of-nanoseconds-long irradiation of tin droplets with a 2 micrometer-wavelength laser for future EUV lithography” O 12 Anubhav Paul (Imaging Physics, Delft University of Technology) “Coherent Fourier scatterometry for subwavelength shape determination” O 13 Olga Duda (HFML-FELIX Laboratory, Radboud University) “Energy flow after vibrational excitation of small molecules” O 14 Kevin Peters (University of Bonn, Germany) “储层诱导的光子冷凝物阵列中的拓扑阶段”
在193 nm处的光刻是在光刻中从436到365到248 nm的自然延续,这取决于不断较高的分辨率的要求。预计193 nm的光刻将在使用常规面具和O.带有相位转移掩码的18-JLM分辨率。正在解决此新波长时与光刻相关的主要问题。已显示出高度透明的光学材料在193 nm处可用。此外,激光辐射以足够缓慢的速度损坏它们,预计高质量投影光学元件将在10年的全日制运行中执行。因此,正在构建193 nm的踏扫描系统,其设计为在22 x 35 mm的场上达到0.25-L-LM分辨率。已经证明了193 nm光孔师方案的范围。它们包括半透明的单层固定,正色调表面成像(sily!ation)以及使用基于Ultrathin硅聚合物的负色调双层。在大多数情况下,我们已经证明了Sub-O.25-TTM分辨率,高光敏性,良好的暴露量化纬度和非常低的蚀刻残基。总的来说,已经采取了全面设计的193 nm光刻的成功步骤,并且没有预期的主要障碍。
关键词:光刻热点、GaAs 蚀刻、SiN 沉积、工艺集成 摘要 光刻技术能否持续对精细几何图形进行图案化,主要挑战之一是整个晶圆和加工场内的最佳焦点存在差异。晶圆图案化侧的这些差异通常是可以理解的,可以很好地表征,并且在选择和优化焦点设置时可以进行校正。然而,晶圆背面的意外和变化的畸形会影响曝光过程中的场平衡(由于基板高度差异而导致的焦点偏移)。这会导致存在污染的地方图案分辨率较差。这些缺陷通常被称为“热点”。在本研究中,研究并表征了一种具有可重复双重像差的故障模式。结果表明,由于一种由 Si x N y 沉积和 GaAs 湿法蚀刻组成的新型集成缺陷模式,形成了意想不到的背面台面。然后,这些台面在金属互连光刻过程中产生热点,导致产量损失 1% 或更多。本研究证明了检测、表征和最小化图案化畸变对于持续改进器件、提高产量和降低化合物半导体制造成本的重要性。引言光刻是半导体行业中不可或缺的技术,是蚀刻、沉积和离子注入的前身[1-4]。保持正确且一致的聚焦和剂量控制对于确保侧壁角度和特征尺寸以满足器件功能和可靠性需求至关重要[2]。因此,先进的光刻技术对于实现器件性能和提高半导体行业的芯片产量至关重要[5]。使用浸没式光刻、双重或多重图案化、分辨率增强技术等创新方法,可以在阿贝衍射极限的几分之一处对器件特征进行图案化[1,6-8]。除了实现更密集的图案化和更小的特征尺寸外,稳健的光刻部署还面临着许多实际挑战[5,9-11]。其中一个挑战是
然而,组织工程并不是唯一受益于逃亡材料的研究领域。自2000年代初以来,使用散散射墨水的3D打印而创建的微通道越来越引起人们的关注,作为微流体学领域中传统软性光刻技术的一种替代方法。这些系统涉及在将微通道网络从2D扩展到3D时的软光刻的持久限制。Therriault等人的开创性工作。[8]证明了将AM扩展到包括3D微通道网络在内的微流体的可能性。尽管3D打印原理为微流体提供了令人兴奋的新机会,但软光刻方法仍然比传统的3D打印技术(例如挤出印刷或立体光刻学)保持优势,在达到小型特征尺寸和高表面质量时。[9,10]虽然基于挤出的技术主要传递了毫米尺寸的尺度,但立体光刻可能会将边界推向100 µm以下。但是,实现此类决议的市售树脂和打印机非常有限。[9]作为常规3D打印技术的替代方法,诸如用于液体打印的液体填充空隙[11]和两光子直接激光写入聚合[12]允许制造特征大小以下50 µm。但是,这些
我们在光刻和添加剂制造之间的接口上提供3D微加工解决方案。这将导致对齐的3D打印功能,例如在芯片上,在纤维上,井中和具有光学质量表面的微流体通道中。