[4] R. Po*,Y. Wang*,V。Golyanik*,K。Aberman,J。T. Barron,A。H. Bermano,E。R. Chan,E。R. Chan,T。Dekel,T。Dekel,A。Holynski,A。Kanazawa,A。Kanazawa,C。K. K. K. K. K. Liu,L。Liu,L。Liu,L。“视觉计算扩散模型的艺术状态”。in:欧洲图表最先进的报告(星星)。2024。
绵羊。 这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。 因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。 除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。 超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。 早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。 然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。 值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。绵羊。这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。例如,已证明在KSOM或CZB培养基中培养小鼠胚胎(250 - 275 MOSM)可以抵御两细胞停滞(Chatot等,1990; Lawitts and Biggers,1991; 1993; 1993; Hadi等,2005)。当受外部条件干扰时,细胞体积控制的迅速恢复是通过Na + /H +交换器NHE1和HCO 3 + /Cl- -Chressanger AE2的激活来介导的,该E2调节Na +和Cl-的细胞内浓度。尽管如此,至关重要的是避免过度高离子浓度,这可能破坏正常的细胞生理和生化过程。Subsequently, preimplantation embryos and oocytes reactivate speci fi c organic osmolyte channels to internalize uncharged osmolytes, replacing inorganic ions and ensuring that cells maintain normal physiological and biochemical processes ( Alper, 2009 ; Donowitz et al., 2013 ; Nakajima et al., 2013 ; Tscherner et al., 2021)。对小鼠卵母细胞中的细胞体积调节机制的研究表明,编码Gly Transporter的SLC6A9的特定缺失消除了植入前胚胎中的GLY转运及其对催眠应激的能力(Tscherner等人,2023)。这些发现强调了对哺乳动物卵母细胞和植入前胚胎的健康发展进行精确细胞体积调节的必要性。gly是蛋白质和核酸合成中必不可少的前体,这对于快速细胞增殖至关重要(Redel等,2016; Alves等,2019)。据报道,Gly是猪卵泡液中最丰富的氨基酸(Hong and Lee,2007),这表明Gly可能是在体外改善卵母细胞成熟的重要因素。虽然精确的机制仍有待完全阐明,但新出现的证据表明,Gly作为牛胚胎和小鼠卵母细胞发展中的有机渗透剂的重要作用(Zhou等,2013; Herrick et al。
第三部分:法案概述 摘要:第 35 号众议院法案 (HB35) 将修订《石油和天然气法》以及《空气质量控制法》,以保护公众免受“儿童健康保护区”内石油和天然气作业污染的影响,“儿童健康保护区”定义为“距离学校地产线 5,280 英尺的区域”。该法案规定暂停未达到空气质量标准或未提交所需报告和计划的油井或生产设施(包括任何靠近学校的油井或生产设施)。拥有井口或生产设施的运营商必须制定年度报告,如果位于儿童健康保护区内,还必须制定泄漏检测响应计划。该法案没有规定生效日期。除非指定更晚的日期,法律将在颁布它们的立法机关休会后 90 天生效。如果颁布,该法案将于 2025 年 6 月 20 日生效。财政影响 HB32 不包含拨款。对于因不遵守该法案规定而必须暂停运营的石油和天然气设施运营商,可能会产生重大但不确定的财政影响。该法案规定,法院、能源、矿产和自然资源部石油保护处 (OCD) 或石油保护委员会 (OCC) 将对不遵守该法案规定的运营商评估民事处罚。对于每次违规,这些罚款最高可达每天 3 万美元。OCC 或 OCD 评估的此类罚款不得超过 20 万美元,但此限制不适用于法院评估的罚款。重大问题 该法案将“学校”定义为“小学、中学、初中、初中或高中,或上述学校的任何组合,包括公立学校、州立或地方特许学校或学生亲自就读的私立学校,包括日托中心,以及与学校相关的公园、游乐场或体育或娱乐设施。” 运营商的年度报告将包括运营商油井或生产设施附近任何儿童健康保护区内的学校地图和清单。 孩子们大部分时间都在学校度过,学校附近油气井的空气污染物可能会给新墨西哥州带来严重的公共卫生问题。 儿童面临更高的空气污染物暴露风险,因为他们的呼吸道很小且仍在发育,他们比成年人呼吸更快,吸入的空气更多,而且他们身体对感染的天然防御能力仍在发展。 2021 年的一项研究调查了上游石油和天然气生产对环境空气污染物的影响,距离水井两到四公里范围内污染物浓度明显较高。作者认为污染物
奖项 数据科学新星,加州大学圣地亚哥分校、芝加哥大学和斯坦福大学 2024 电子工程与计算机科学新星,麻省理工学院 2024 MICCAI NIH 奖,马拉喀什 2024 MICCAI 旅行奖,利马 2020 IPMI 奖学金,香港 2019 校长奖学金,上海大学(最高荣誉,前 10 名) 2018 国家奖学金,中国教育部(前 1%) 2018 优秀毕业生,中国教育部 2018 宝钢国家奖学金,上海(前 4 名) 2017 美国数学建模竞赛 (MCM) 决赛获胜者(团队负责人,前 0.4%,36/8843) 2017 上海市数学竞赛(数学专业)三等奖 2016 上海大学特等奖学金(前 3%) 2015-2017 上海大学优秀学生奖2015-2017 上海大学公益慈善奖 2015-2016
在法院使用人工智能(AI)正在加速[1,2]。AI可以完善从证词和文本[3-5]中提取的信息,分析监视摄像头图像以识别诉讼人[6],对研究材料进行分类并有效地准备试验转录本[7,8]。它也已证明是法官的助手,例如,通过确定哪些证据和证词是结论性的,可靠地证明事实[9],确定相似的案件并根据先例[10]提出建议。对实现机器人法官(也称为“ AI法官”和“算法法官”)的期望正在增长,这些法官可以取代人类法官并根据大量案件数据自动做出决定[11-14]。这些好处是可观的;但是,它们必须与AI在司法背景下所构成的独特挑战保持平衡。在司法领域中使用AI提出了必须解决的挑战。随着AI从培训数据中学习的,它可能包含数据中包含的偏差[15]。任何基于种族,性别,社会背景或其他示范性因素在培训数据中造成的歧视都会威胁到判断的公平性。所谓的“黑盒问题”也是一个主要问题[16,17]。尽管问责制是法院决策的重要因素[例如,16-20],但由于缺乏无法访问算法的内部运作,决策标准和学习过程[21,22],AI如何得出特定结论或判断的过程是不透明的。这种不透明度使AI难以满足当前的问责制标准,尽管有人认为不透明度问题并不重要,因为人类的思想是相似的(例如[23])。尽管如此,AI提供了解决人类局限性的巨大潜力,尤其是在消除经常影响人类判断的认知偏见和情感影响方面。这些优势表明,它在法庭上的使用不仅是不可避免的,而且对于实现更公平,更有效的试验至关重要。人们可能会根据访问记忆(例如最近或令人难忘的案件(可用性启发式; [24])做出判断,或者根据预先给出的数值信息做出定量判断,例如检察官的认罪或所要求的损害赔偿金额(锚定; [25])。此外,人们通常不会始终如一地判断同一情况(噪声; [26])。情绪,例如愤怒和悲伤,会影响判断,这可以改变决策[27-29]。当然,必须克服诸如应对AI培训数据中的偏见以及确保决策过程中透明度的问题,但是通过减轻认知偏见和情感影响,AI有可能极大地提高司法决策的公平和一致性。此外,组织大量文件和使用AI的证据将大大缩短作出判决所需的时间并减少诉讼延迟[30,31]。AI还可以减少运行法庭所需的人工成本和时间,因为自动化,尤其是简单和重复的任务,将使法院更具成本效益[32,33]。此外,AI驱动的在线平台和聊天机器人将使公众更容易获得法律建议和帮助[34,35],从而改善了对法律服务的访问[36]。由于许多潜在的好处和上述的好处,因此将AI引入法院的可能性现在是现实的[37]。因此,我们的重点不应该放在是否应将AI引入法庭上,而应放在如何成功地在法庭设置中使用它的新兴问题。AI可用于公民参与的刑事审判,例如陪审团和对抗性审判[38]。在这些法院中,可能会有一个程序,陪审团做出决定
摘要:过渡金属氧化物(TMOS)是可安全和快速充电的电池的有前途的阳极材料,但是它们的高工作电势限制了能量密度。在这里,我们制定了一种抑制无序岩盐(DRS)Li 3 V 2 O 5(LVO)阳极的工作潜力的策略,通过MG掺杂量约为10%至0.54 V。密度功能理论(DFT)计算将这种电压降低归因于li离子的位置能量增加,因为Mg掺杂,对LI迁移障碍的影响很小。mg-掺杂的LVO在1000个周期以上的95%以上,速率为5C。全细胞具有0.8 CO 0.8 CO 0.1 Mn 0.1 Mn 0.1 O 2阴极的预期,预期的能量密度和能量密度的增加,同时保留了5C的250个周期的能力的91%,以表明我们的发现在5C中显示出良好的良好的良好态度,该良好的良好的良好态度的良好的良好态度是良好的途径。增强的能量密度。l
在本文中,我们为经历多个相关退化过程的系统开发了一个维护模型,其中使用多元随机过程来建模退化过程,并使用协方差矩阵来描述过程之间的相互作用。当任何退化特征达到预先指定的阈值时,系统即被认为发生故障。由于基于退化的故障具有休眠性,因此需要进行检查以检测隐藏的故障。检查后将更换发生故障的系统。我们假设检查不完善,因此只有特定的概率才能检测到故障。基于退化过程,以系统可靠性评估为基础,然后建立维护模型以减少经济损失。我们提供了成本最优检查间隔的理论边界,然后将其集成到优化算法中以减轻计算负担。最后,以疲劳裂纹扩展过程为例,说明了所开发的维护策略的有效性和稳健性。研究了退化依赖性和检查精度的影响,以获得更多管理见解。数值结果表明,检查不准确性对运营成本有重大影响,建议应付出更多努力来提高检查精度。
1斯坦福材料与能源科学研究所,SLAC国家加速器实验室,Menlo Park,CA 94025,美国2美国2号物理系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国3美国3号应用物理系,斯坦福大学,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,美国加利福尼亚州94305,美国40年5月5日,美国40号。固体化学物理研究所,01187德国,德国6卡夫利研究所,位于康奈尔大学康奈尔大学,康奈尔大学,康奈尔大学,纽约,纽约,14850,美国 *使用外延菌株以薄膜形式以薄膜形式的环境压力超导性。最近,在压缩的双层镍薄膜中已经观察到超导性的迹象,其起源温度超过40 K,尽管具有宽阔和两步状的过渡。在这里,我们报告了压缩性的LA 2 PRNI 2 O 7薄膜中的内在超导性和正常状态转运性能,这些薄膜通过等值的PR替代,生长优化和精确的Ozone退火来实现。超导的开始发生在48 K以上,零电阻达到30 K以上,而在1.4 K时的临界电流密度比以前的报告大100倍。正常状态电阻率表现出二次温度依赖性,指示了费米液体行为,而其他现象学相似性与过度库酸酯中的运输相似,这表明其新兴特性的相似之处。
- 机器人[link]和AR [link]辅助医疗程序| C ++,Python,C#,Matlab,Ros,Unity,VTK O完成了机器人TMS的原型,并将其用于初步的内部临床试验和神经科学研究。o开发了用于TMS目标计划和医疗图像查看的神经运动系统。 o开发了具有用于KUKA LBR7 IIWA控制[repo]的功能模块的集成[请求演示]硬件[repo],手眼校准[2,8],工具校准[2],动力学建模[7],用户界面,用户界面和网络[repo,repo,repo]。 o开发的AR系统[2,9]提供了碰撞检测线索,并能够进行人体工程学的计划和执行。 o撰写了学术出版物[2,5,7-9,13,14]和专利申请,并在会议上介绍。 o将这些技术和系统应用于其他侵入性程序,例如股骨成形术,脊柱融合和颅面手术。o开发了用于TMS目标计划和医疗图像查看的神经运动系统。o开发了具有用于KUKA LBR7 IIWA控制[repo]的功能模块的集成[请求演示]硬件[repo],手眼校准[2,8],工具校准[2],动力学建模[7],用户界面,用户界面和网络[repo,repo,repo]。o开发的AR系统[2,9]提供了碰撞检测线索,并能够进行人体工程学的计划和执行。o撰写了学术出版物[2,5,7-9,13,14]和专利申请,并在会议上介绍。o将这些技术和系统应用于其他侵入性程序,例如股骨成形术,脊柱融合和颅面手术。