fda:在机构中拥抱灵活性以推进创新疗法•代理适应性:加入OTP领导力,讨论FDA如何发展其方法,以更好地支持药物制造商通过提高灵活性和学习计划来推进创新疗法
此广义信息是诊断,治疗和/或药物信息的有限摘要。它并不意味着全面,应用作帮助用户理解和/或评估潜在诊断和治疗方案的工具。它没有包括有关适用于特定患者的条件,治疗,药物,副作用或风险的所有信息。这不是根据医疗保健提供者的检查和评估患者的特定和独特情况的评估,而不是医疗建议,替代医疗建议,诊断或治疗医疗保健提供者。患者必须与医疗保健提供者交谈,以获取有关其健康,医疗问题和治疗选择的完整信息,包括有关使用药物的任何风险或益处。此信息不认可任何治疗,有效或批准治疗特定患者的任何治疗方法。UpTodate,Inc。及其分支机构否认与此信息或其使用有关的任何保证或责任。此信息的使用受使用条款的约束,可在https://www.wolterskluwer.com/en/know/clinical-felmefterices-terms上获得。
体细胞基因组编辑的临床应用需要可以推广到广泛患者的疗法。tar-插入无启动子转基因的插入可以确保编辑是永久且广泛适用的,同时最大程度地降低了脱靶集成的风险。在肝脏中,白蛋白(ALB)基因座是目前唯一用于无启动子插入式插入的特征良好的位点。在这里,我们针对ApoA1基因座,其腺体呈现病毒(AAV)的CRISPR-CAS9递送(AAV),并达到靶向肝细胞的6%至16%的速率,没有毒性的证据。我们进一步表明,内源性apoA1启动子可以驱动治疗蛋白(例如载脂蛋白E(APOE))的稳健和持续表达,在高胆固醇血症模型中大大降低了血浆脂质。最后,我们证明了由ApoA1靶向的富马乙酸乙酸乙酸苯胺其乙酸酯水解酶(FAH)可以纠正和挽救严重的代谢性肝病遗传性酪氨酸。总而言之,我们将APOA1识别为一个新型整合位点,该位点支持基因治疗应用中肝脏中持久的转基因表达。
3分在2023年的第一次访客调查中,有856人表示,他们很高兴通过电子邮件与他们联系,以在活动结束后一年进行后续调查。后续调查已发送给856名受访者,但是,由于电子邮件地址错误或现在不活动的电子邮件地址,有190个反弹。从中,我们收到了近100个回复,以访问者,支出和工作方式构成了我们一年一度的影响评估的基础。4 LCR文化网络涉及利物浦艺术再生财团的主要利益相关者(该市的10个最大的文化组织,包括泰特,利物浦爱乐乐团和国家博物馆利物浦)和利物浦的创意组织(超过60个小型文化和社区艺术组织)
肝切除仪启动了一个精心协调的增生过程,其特征在于驱动肝脏再生的调节细胞增殖。这个过程以肝脏质量的完全恢复结束,展示了这种体内平衡的精度和鲁棒性。肝脏迅速再生到功能齐全的器官的显着能力对于活着的供体肝移植(LDLT)的成功至关重要。在健康肝脏中,肝细胞通常保持静止状态(G0)。 然而,在部分肝切除术后,这些细胞过渡到G1相,以重新进入细胞周期。 手术重新分段会诱导各种应力,包括身体损伤,血流改变和代谢需求增加。 这些全部触发了在组织修复,再生和功能恢复中涉及的许多基因的激活和抑制。 在此过程中,在血液中可检测到的编码和非编码的RNA提供了对驱动肝脏回收的基因反应的有价值的见解。 这项研究将临床基因表达数据整合到先前开发的肝脏再生数学模型中,该模型跟踪静止,启动和增殖的肝细胞之间的过渡,以构建虚拟,特定于患者的肝模型。 使用来自12个健康LDLT供体的全部tran-squartome RNA测序数据,一年在14个时间点收集,我们通过加权基因共表达网络分析(WGCNA)鉴定了肝切除特异性基因表达模式。 因此,我们为LDLT供体的肝脏开发了个性化的渐进数字双胞胎(PEPMDT)。在健康肝脏中,肝细胞通常保持静止状态(G0)。然而,在部分肝切除术后,这些细胞过渡到G1相,以重新进入细胞周期。手术重新分段会诱导各种应力,包括身体损伤,血流改变和代谢需求增加。这些全部触发了在组织修复,再生和功能恢复中涉及的许多基因的激活和抑制。在此过程中,在血液中可检测到的编码和非编码的RNA提供了对驱动肝脏回收的基因反应的有价值的见解。这项研究将临床基因表达数据整合到先前开发的肝脏再生数学模型中,该模型跟踪静止,启动和增殖的肝细胞之间的过渡,以构建虚拟,特定于患者的肝模型。使用来自12个健康LDLT供体的全部tran-squartome RNA测序数据,一年在14个时间点收集,我们通过加权基因共表达网络分析(WGCNA)鉴定了肝切除特异性基因表达模式。因此,我们为LDLT供体的肝脏开发了个性化的渐进数字双胞胎(PEPMDT)。这些模式被组织成具有独特的转录动力学的截然不同的簇,并使用深度学习技术映射到模型变量。由此产生的PEPMDT通过利用血液衍生的基因表达数据来模拟再生反应来预测个体患者的恢复轨迹。通过将基因表达谱转换为动态模型变量,这种方法桥接了临床数据和数学建模,为个性化医学提供了强大的平台。这项研究强调了数据驱动的框架(如PEPMDT)在推进精密医学和优化LDLT供体的恢复结果方面的变革性潜力。———————————————————————————————————————————————————————————————————肝脏再生;部分肝切除术;数学建模;深入学习;数字双胞胎;活供体肝移植(LDLT)
利什曼病是一种被忽视的媒介传播疾病,由通过感染的沙蝇叮咬传播的利什曼原虫引起。目前的治疗方法有限,部分原因是它们成本高昂且副作用大,而且目前还没有可用的人类疫苗。沙蝇唾液已被研究作为抗利什曼原虫疫苗的潜在应用。唾液蛋白 PpSP15 是第一个针对 L. major 的保护性疫苗候选物。此外,PsSP9 已被引入作为针对 L. tropica 的高免疫原性唾液蛋白。在此,我们旨在开发一种有效的多价活疫苗来控制由两种主要物种 L. major 和 L. tropica 引起的皮肤利什曼病。因此,使用 T2A 接头将上述两种唾液蛋白整合到 L. tarentolae 基因组内作为安全的活载体。然后,在用 CpG 预先处理的 BALB/c 小鼠中评估了共表达 PpSP15 和 PsSP9 的重组 L. tarentolae 的免疫原性和保护作用,以对抗 L. major 和 L. tropica。在感染前后的不同时间点进行细胞因子测定、寄生虫负担和抗体评估后,在接种共表达 PpSP15 和 PsSP9 的重组 L. tarentolae 的小鼠中获得了有希望的保护性 Th1 免疫力。这是首次证明基于不同唾液蛋白组合的安全活疫苗对两种不同利什曼原虫感染攻击的效力的研究。
摘要:脂质代谢失调是肝癌的共同特征,维持肿瘤细胞生长和存活必不可少。我们旨在利用这一弱点,通过靶向关键代谢因子前蛋白转化酶枯草溶菌素/kexin 9 型 (PCSK9) 来重新连接致癌代谢中心。我们使用三种肝癌细胞系 Huh6、Huh7 和 HepG2 评估了 PCSK9 抑制的效果,并使用斑马鱼体内模型验证了结果。PCSK9 缺乏导致所有细胞系的细胞增殖受到强烈抑制。在脂质代谢水平上,PCSK9 抑制导致细胞内中性脂质、磷脂和多不饱和脂肪酸增加以及脂质氢过氧化物积累增加。分子信号分析涉及 sequestome 1/Kelch 样 ECH 相关蛋白 1/核因子红细胞 2 相关因子 2 (p62/Keap1/Nrf2) 抗氧化轴的破坏,导致铁死亡,其形态特征通过电子和共聚焦显微镜得到确认。使用斑马鱼异种移植实验验证了 PCSK9 缺乏的抗肿瘤作用。抑制 PCSK9 可有效破坏肿瘤代谢过程,诱导代谢衰竭并增强癌细胞对铁触发脂质过氧化的脆弱性。我们提供了强有力的证据支持抗 PCSK9 方法的药物重新定位以治疗肝癌。
鼠伤寒沙门氏菌是伤寒的病因学药,一种急性,发热的肠道疾病。伤寒在世界许多地方仍然是一种重要疾病。进入感染区域的旅行者在摄入受污染的食物或水后有感染伤寒的风险。伤寒被认为是中美洲和南美,非洲大陆,近东和中东,东南亚和印度次大陆地区的大多数地区的流行(3)。在美国,每年大约有500例伤寒病例(4)。在这些患者中有62%(从1975年至1984年的数据)在美国以外的疾病中获得了该疾病,而在38%的患者中,该疾病是在美国境内获得的(5)。在1977年至1979年之间在美国收购的340例案件中,有23%与伤寒有关,24%是由于食物暴发,23%为