基因组结构变异(SV)是指基因组尺度上个体间基因序列的差异,其在基因组中分布广泛,主要表现为插入、缺失、重复、倒位和易位等。SV具有片段长、覆盖范围大的特点,对家畜遗传特性和生产性能有显著影响,在研究品种多样性、生物进化、疾病相关性等过程中发挥着重要作用。对SV的研究有助于加深对染色体功能和遗传特性的认识,对理解遗传性疾病的发生机制具有重要意义。本文对牛、水牛、马、绵羊和山羊基因组中SV的概念、分类、主要形成机制、检测方法及研究进展进行综述,旨在通过基因组研究揭示表型性状差异的遗传基础和适应性遗传机制,为更好地认识和利用草食家畜遗传资源提供理论基础。
大多数消化和同化发生在牲畜的胃肠道中。平衡饮食中必需养分的可用性是成功生产动物的关键因素。肠道与许多菌群有关,这些微生物群充当广泛的障碍,在免疫发育中发挥积极作用,并加速饮食挑战。此外,肠道微生物组有助于在细胞/组织水平上进行交流,并介导动物的整体代谢。简而言之,肠道的适当功能是执行多种功能以提高牲畜耕作的健康,生产力和可持续性所必需的。因此,可以通过了解肠道在动物中的作用来最小化肠道疾病。从另一个角度来看,几种抗生素用于抵消与肠道疾病相关的疾病和感染。然而,一种涉及营养遗传学和动物行为的益生菌使用的全面方法增加了动物的韧性和鲁棒性的可能性。这降低了肠道相关疾病的速度并降低了商业药物的消费。但是,临床药物将用于治疗其他感染和疾病。换句话说,肠道微生物组在肠道中扮演着重要的障碍和消化作用,在体内牲畜模型中已经很好地证明了这一点。肠道功能和微生物组定植是免疫系统的触发因素和支持。此外,增强肠道健康的早期干预措施为整体牲畜发展提供了线索。大量研究证明了肠道微生物组,免疫系统和大脑之间的互补关联。肠道微生物组也影响了压力和焦虑的行为特征。总体而言,肠道健康受到GIT屏障的饮食,组成和功能的影响,并具有有效的消化和同化因子,这反过来又调节了动物的整体免疫状态。微生物群有助于发酵吸收,增强免疫力和生长,并改善宿主发育。此外,它调节肠道环境的稳定并保持瘤胃pH。因此,肠道菌群会加速饲料的效率,而高性能动物是牲畜农业的重要目标,可以满足日益增长的动物产品需求。
干旱对美国农业部门施加了巨大的成本,特别是对于依靠降水来种植饲料的牲畜生产商而言。美国农业部(USDA)管理多个计划,以减轻干旱的经济成本。这些计划之一是USDA,农场服务机构(FSA)牲畜饲料灾难计划(LFP),该计划为受干旱影响的现场股票生产商提供付款。计划评估结果表明,接受LFP付款的干旱影响县的生产者与在较少的干旱影响县中获得了类似的牛群保留和清算成果,而该县不符合LFP支付的资格。模拟模拟在本报告中导致模拟表明,LFP对联邦预算构成了财务气候风险。取决于温室气体(GHG)排放的未来增加,联邦政府对LFP的年度支出预计将增加超过当前平均支出的45-135%(2022年以2022美元)。
AUC非洲联盟委员会ABS农业营销委员会南非科学学院东部和南部非洲的共同市场CAADP CAADP综合非洲农业农业发展计划EAC EAC东非社区EDB EDB经济社区EDB经济社区EDB经济发展局EDB经济发展委员 Young Academy Science Advice Working Group IGAD Inter-Governmental Authority on Development IAP Inter-Academy Partnership ICT Information and Communication Technologies IOC Indian Ocean Commission MAIFS Ministry of Agro Industry and Food Security MAST Mauritius Academy of Science and Technology MCA Mauritius Chamber of Agriculture MIBL Mauritius Institute of Biotechnology Limited MYAI Mauritius Young Academy Initiative NASAC Network of African Science Academies NCDS非传染性疾病非政府组织非政府组织RTC区域培训中心SAYAS南非年轻科学学院SADAS南非南部非洲南部非洲发展社区SIDS小岛小岛发展州联合国可持续发展国家可持续发展目标UOM UOM UOM UOM UM UNIOMAL IM MAURITIUS UNIOMAL ON USAID US USAID UNIOMAL IN US of MAURITIUS UNIOMALAUC非洲联盟委员会ABS农业营销委员会南非科学学院东部和南部非洲的共同市场CAADP CAADP综合非洲农业农业发展计划EAC EAC东非社区EDB EDB经济社区EDB经济社区EDB经济发展局EDB经济发展委员 Young Academy Science Advice Working Group IGAD Inter-Governmental Authority on Development IAP Inter-Academy Partnership ICT Information and Communication Technologies IOC Indian Ocean Commission MAIFS Ministry of Agro Industry and Food Security MAST Mauritius Academy of Science and Technology MCA Mauritius Chamber of Agriculture MIBL Mauritius Institute of Biotechnology Limited MYAI Mauritius Young Academy Initiative NASAC Network of African Science Academies NCDS非传染性疾病非政府组织非政府组织RTC区域培训中心SAYAS南非年轻科学学院SADAS南非南部非洲南部非洲发展社区SIDS小岛小岛发展州联合国可持续发展国家可持续发展目标UOM UOM UOM UOM UM UNIOMAL IM MAURITIUS UNIOMAL ON USAID US USAID UNIOMAL IN US of MAURITIUS UNIOMAL
牲畜实验室(LL)将使用先进的基因工程,数据分析和机器学习技术来创建出色的优质细胞系。ll将提供经过验证的细胞系集合,这些细胞系被证明可以扩展,完全脱离风险,并提供一流的单元线工程(控制,稳定性等)。即使是不喜欢GM的公司(不到所有报告的公司的一半)也需要GM细胞在其研发过程中,因为GM细胞稳定,并且可以在实验中提供可靠的常数。
本文评估了芝加哥商业交易所(CME)决定关闭牲畜期货坑对客户订单的执行质量的影响。我们的发现表明,在关闭之前,牲畜期货坑提供了高即时的执行,并吸引了大量订单。由于如此高的即时订单通常会更快地执行,并且成本更高,因此在坑封口封闭后,它们向电子市场的迁移解释了为什么电子订单的执行平均速度越来越快,对于以前是活跃的维修站用户的客户而言。但是,我们的结果还表明,当我们解释所有订单,坑和电子订单时,这些坑式用户客户将面临较低的整体执行成本。
有效的废物管理实践对于实现可持续农业和粮食安全目标至关重要。通过优先考虑土壤健康,水质和资源效率,可持续废物管理可以有助于开发有弹性的农业系统,这些系统可以满足当代和后代的粮食需求,尤其是在不断变化的气候下。农业和牲畜废物包括农业,牧场和畜牧业的有机材料,例如农作物残留物,食物废料,肥料和床上用品材料,需要适当地处理可持续的农业实践。通过堆肥通过农业和牲畜废物管理可能是一种可持续的实践,可以帮助回收农业活动产生的有机材料,并将其转化为有价值的土壤修正案。堆肥是将有机物回收为富含营养的土壤修正案的自然过程。像任何过程一样,它具有自己的一系列优势,通过减少对化学肥料的需求,可以改善土壤结构,质地和生育能力,从而促进有机微生物的增长,从而破坏有机物质,抑制有害的病原体,抑制有害病原体,从而增强土壤中的营养可用性(Zainudin et al Al Zainudin等)。它还有助于隔离土壤中的碳,通过减少温室气体排放来减轻气候变化(Jeong等,2019; Nazir等,2024)。更重要的是,堆肥是通过将有机材料回收为堆肥来创建农业生产系统中的闭环系统,然后将有机材料回收为堆肥,然后将有机材料用于肥料,改善农作物,改善土壤健康和再生生态系统(Ragany等,2023)。这种循环模型最大程度地减少了输入,最大化资源的效率并降低了对外部输入的依赖,例如合成肥料和化学物质(Selvan等,2023)。
2012年,联合国环境计划(UNEP)和孟加拉国,加拿大,加纳,墨西哥,瑞典和美国的政府成立了气候与清洁空气联盟(CCAC),以加速针对短暂的气候污染(SLCP)的行动,以限制全球暖通,以限制全球暖通,同时提供对食品安全效率,人类健康,人类健康,人类和人类健康,人类和人类健康,人类和人类的效率,1。《巴黎协定》确定了与前工业水平相比,将全球变暖降低到2°C低于2°C,优选为1.5°C的承诺(联合国,2015年; UNFCCC 2)。虽然二氧化碳(CO 2)在气候变化中的作用众所周知,但注意力减少了减轻非CO 2气候污染物或“超级污染物”,而“超级污染物”约占全球变暖的一半(Ou等,2022)。切割甲烷(CH 4)的排放尤其是最具成本效益的缓解策略之一,将对作物生产力和人类健康有重大利益(UNEP和CCAC,2021年)。自CCAC合作伙伴在全球甲烷誓言3上发起以来,美国和欧盟在
3) 在广泛使用之前,应在牛身上对各批次疫苗进行独立测试,以检测其是否产生 FMDV 抗体,具体如下:• 应使用每批次的样品对一组 5 头无 FMDV 测试牛(与其余牛群隔离)进行接种。这需要在整个过程中保持极高的生物安全性。• 应通过病毒中和试验 (VNT) 和非结构蛋白 (NSP) ELISA 测量接种后第 0 天和第 21 天收集的血清中诱导的 FMDV 抗体水平。• 应将第 0 天和第 21 天的血清送至有资质的 FMD 参考实验室进行检测。这将提供过期疫苗抗原含量的血清学读数,并给出预期保护的指示。
Genomics is one of the newest branches of biology that has progressed tremendously during the last decades. Genomics deals with the molecular structures, functions, evolution, and mapping of the genomes of any species and has signi fi cantly generated new information that has improved our understanding of the complex biology and genetic mechanisms of animal production systems. The advancement of genomics is linked with a number of key developments, which include the rapid expansion of next-generation sequencing and chip- based genotyping assays. Large-scale genomics data are now utilized more and more due to the dwindling cost of such sequencing and genotyping techniques. Livestock breeding programs, including selection and conservation efforts, have attained huge success due to affordable genomic prediction, particularly in dairy cattle. It is expected that there will be further reduction in the cost of these high-throughput genomic data generation platforms and more development of precise estimation methodologies. Multi-disciplinary involvement is going to further bene fi t the genomics community with the advancement of robust and reliable tools in the fi eld of bioinformatics and their use in livestock breeding. Keeping these developments in the area of livestock genomics in mind, the present Research topic of the Frontiers in Genetics titled “ Application of Genomics in Livestock Populations under Selection or Conservation ” was aptly selected with several major themes that highlighted the usage of genomics for conservation, current methods of genomics, application of whole-genome- and genome-wide-based techniques, and use of different bioinformatics tools and pipelines for the processing of genomic data. The resulting efforts contributed to the publication of a total 19 research papers in the current volume, comprising major focal points in the area of genomics of livestock and other species with the concerns of the present day. However, the ocean of genomics is too vast, and even this wide-array of published articles could hardly justify an ounce of that vastness! Nonetheless, genuine efforts were made to include articles in this volume on those central themes of genomics that comprise the major skills and techniques employed in various animal populations for selection and conservation issues. These include genome- wide association studies (GWAS), differential gene expression utilizing transcriptome data, and analysis of selection signatures through whole-genome sequencing and high-density genotyping datasets, which are utilized for discovering genes and genomic variants that control signi fi cant traits of importance in livestock species.