LIDAR和SLAM为我们提供了一个离线的全球地图,但是我们需要检测动态障碍,最重要的是行人,以及在录制全球地图时不存在的汽车,骑自行车的人和其他物体。基于Intel Realsense和Livox 100中激光雷达的实时图像,我们需要确定3D中障碍物的位置和类别。
摘要:在本文中,我们提出了一种基于新型的,视觉转化器的端到端姿势估计方法,Lidpose,用于实时人类骨架估计,在非重复循环扫描(NRCS)LIDAR点云中。在vitpose架构上建造,我们介绍了新颖的改编,以解决NRCS激光雷达的独特特性,即稀疏性和异常的类似Rosetta的扫描模式。所提出的方法解决了基于NRCS激光雷达的感知的常见问题,即测量的稀疏性,它需要在记录数据的空间和时间分辨率之间保持平衡,以有效地分析各种现象。lidpose利用NRCS激光雷达传感器的前景和背景细分技术来选择感兴趣的区域(ROI),使下痛成为移动行人检测和从RAW NRCS LIDAR LIDAR LIDAR测量序列中移动的端到端方法,该方法由静态传感器捕获的静态传感器供Sureveellance Seasarions捕获。为了评估该方法,我们创建了一个新颖的,真实的,多模式的数据集,其中包含来自Livox Avia传感器的相机图像和LIDAR点云,并带有注释的2D和3D人体骨架地面真相。