摘要 - 软件错误在开发和维护过程中构成了巨大的挑战,从业者将近50%的时间用于处理错误。许多现有技术采用信息检索(IR),使用错误报告和源代码之间的文本和语义相关性来本地化报告的错误。但是,他们经常难以弥合需要深入上下文理解的错误报告和代码之间的关键差距,这超出了文本或语义相关性。在本文中,我们提出了一种用于错误本地化的新技术 - 大脑 - 通过评估与大语言模型(LLM)之间的相关性来解决上下文差距。然后,它利用LLM的反馈(又称智能相关性反馈)来重新调整查询并重新排除源文档,从而改善错误本地化。我们使用基准数据集–Bench4BL和三个完善指标评估大脑,并将其与文献的六个基线技术进行比较。我们的实验结果表明,MAP,MRR和HIT@K的大脑的表现分别超过了87.6%,89.5%和48.8%的利润率。此外,由于相应的错误报告质量较差,因此可以将≈52%的错误定位为无法通过基线技术定位的错误。通过解决上下文差距并引入智能相关性反馈,大脑不仅提高理论,而且可以改善基于IR的错误本地化。索引术语 - Bug本地化,查询重新印象,智能相关性反馈,信息检索,大语言模型,自然语言处理,软件工程
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
摘要。自动型表面车辆(ASV)由于其广泛的应用而成为重要的研究重点。ASV发展中的一个主要挑战是对水面上的物体(例如浮标)的快速而准确的检测和鉴定。本研究研究了Yolov5在ASV上的浮标检测,重点是机器人操作系统(ROS)框架内的路径定位。路径定位用于根据浮标检测来确定血管的路线及其通过测试路径的移动。结果表明,Yolov5在检测ROS生态系统组成部分的凉亭模拟器内检测边界浮标时达到了100%的精度。此外,ASV能够沿着测试路径的中心准确导航,而不会与边界浮标相撞。这项研究有望为ASV技术的发展做出重大贡献。
摘要 - 物联网领域(IoT)中的杂货应用涉及跟踪人员和商品,其质量受室内位置精度影响的质量。信号方法的模式匹配,也称为特征指纹方法,是众多室内定位方法之一。由于存在嘈杂的环境情况,因此在定位中实现精度很容易中断。需要有效的稳定技术来减轻对本地化质量的负面影响。本研究介绍了几种新型机器学习方法和索引方法,旨在提高室内定位应用的准确性。遗传算法和部分最小二平方理论提议为此目的共同起作用。传统的指纹定位方法,例如粒子群优化(PSO),高斯模型还测试了验证目的。这种方法通过PSO算法试图近似接收信号强度指示器(RSSI)信号的噪声频谱,从而通过PSO算法来调整高斯模型的主要频率/振幅。与PSO/Gaussian模型指纹方法相比,遗传算法(GA)/部分最小二乘(PLS)/K-Nearest邻居(KNN)方法可以达到92%的室内定位精度,同时需要最小的开发时间。在复杂的实验室和走廊设置中,当目标位置验证程序中包括加权KNN算法时,总准确率可以达到95%,分辨率为16 cm。总体而言,我们建议的GA/PLS/KNN方法优于传统方法和基于许多无线技术的当前静态定位方法,例如WiFi,4G/5G,蓝牙低能(BLE)等。关键字 - 事物(IoT)本地化,粒子群优化(PSO)算法,部分最小二乘(PLS)算法,遗传算法(GA),智能定位
结果:分析的患者中,女性 48 人(60%),男性 32 人(40%)。患者年龄平均为 56.1 ± 10.3 岁(31-84 岁)。动脉瘤破裂和未破裂患者的平均年龄差异无统计学意义,分别为 55.8 ± 9.5 岁和 56.8 ± 12.3 岁。男性患者中动脉瘤破裂的诊断率明显高于女性患者,分别为 84.38% 和 62.5%。在破裂和未破裂动脉瘤组中,小动脉瘤、大动脉瘤和巨大动脉瘤的分布存在统计学上的显著差异,小动脉瘤出血率略高(77.19% vs 56.52%),大动脉瘤不出血率略高(26.09% vs 21.05%),巨大动脉瘤不出血率显著高(17.39% vs 1.75%)。28.75% 的患者动脉瘤未出血,即未破裂,71.25% 的患者诊断为出血,即动脉瘤破裂。69 名(86.25%)患者存在危险因素,其中最常见的危险因素是高血压,占 86.25%。 33.75%的患者患有高脂血症,13.75%的患者患有糖尿病,所有患者均存在吸烟的危险因素。
全球卫生集群将本地化定义为:“一个协作且动态的过程,旨在使地方和国家参与者(L/NAs)——包括地方公共机构——公平且有意义地参与卫生集群,实现符合人道主义原则的当地主导的卫生响应。”
抽象准确地定位了3D声音源并估算其语义标签(其中可能不可见,但假定源位于场景中物体的物理表面上)具有许多真实的应用,包括检测气体泄漏和机械故障。在这种情况下,视听弱相关性在得出创新方法时提出了新的挑战,以回答是否或如何使用交叉模态信息来解决任务。朝着这一目标,我们建议使用由针孔RGB-D摄像头和共面四通道麦克风阵列(MIC-ARRAY)组成的声学相机钻机(MIC-Array)。通过使用此钻机来记录来自多视图的视听信号,我们可以使用跨模式提示来估计声源3D位置。特别是,我们的框架Soundloc3d将任务视为集合预测问题,集合中的每个元素都对应于潜在的声源。鉴于视听弱相关,首先是从单个视图mi-crophone阵列信号中学到的集合表示,然后通过主动合并从多视rgb-d图像揭示的物理表面提示来确认。我们证明了Soundloc3d在大型模拟数据集上的效率和优势,并进一步显示了其对RGB-D测量不准确性和环境噪声干扰的鲁棒性。
自动驾驶汽车由于技术进步及其改变转移的潜力而引起了极大的关注。该领域中的一个关键挑战是精确的定位,尤其是在基于激光雷达的地图匹配中,由于数据中的退化,这很容易出现错误。大多数传感器融合技术,例如卡尔曼过滤器,都依赖于每个传感器的准确误差协方差估计来提高定位精度。但是,获得地图匹配的可靠协方差值仍然是一项复杂的任务。为了应对这一挑战,我们提出了一个基于神经网络的框架,用于预测LIDAR地图匹配中的本地化错误协方差。为了实现这一目标,我们引入了一种专门设计用于错误协方差估计的新型数据集生成方法。在使用Kalman滤波器的评估中,我们实现了2 cm的定位准确性,这是该域的显着增强。
摘要 - 多模式大语言模型(MLLM)在许多自动驾驶任务中都表现出令人满意的效果。在本文中,MLLM可用于解决联合语义场景的理解和风险本地化任务,而仅依靠前视图像。在拟议的MLLM-SUL框架中,双分支视觉编码器首先旨在从两种分辨率中提取特征,并且丰富的视觉信息有助于语言模型,以准确描述不同尺寸的风险对象。然后,对于语言生成,美洲驼模型进行了微调,以预测场景描述,其中包含驾驶场景的类型,风险对象的动作以及驱动意图和自我车辆的建议和建议。最终,基于变压器的网络结合了回归令牌,以定位风险对象。在现有的戏剧 - 罗利人数据集和扩展的戏剧-SRIS数据集上进行了广泛的实验表明,我们的方法是有效的,超过了许多基于图像的最新和基于视频的方法。具体来说,我们的方法在现场理解任务中获得了80.1%的BLEU-1分数和298.5%的苹果酒得分,而本地化任务的精度为59.6%。代码和数据集可在https://github.com/fjq-tongji/mllm-sul上找到。