A.研究示意图(A1)概述了UKB的抑郁症结果,(A2)GWAS和GWAS后分析,以及(A3)在我们所有大家研究计划中的后续分析。B.遗传主成分分析(PCA)图显示了UKB参与者在前三个遗传PC上的相对位置。使用PCA,基于1000个基因组项目3期和人类基因组多样性项目的遗传相似性,将参与者分配给“遗传祖先”:欧洲/欧洲/欧洲/欧洲/欧洲中部/CSA,类似非洲/非洲/非洲/非洲的欧洲/欧洲/amr类似的美国/AMR般的美国/emr like,East-like类似于欧洲/欧洲,类似于欧洲/欧洲/欧洲,类似于欧洲/欧洲/欧洲/欧洲/欧洲/欧洲/欧洲基因组。C.指定的遗传祖先的样本量分布。D.非欧洲类群体中不同抑郁症结果的相对几率相对于欧洲样组,控制年龄,性别和UKB评估中心。
前室深度(ACD)是与一角闭合青光眼(PACG)相关的定量性状。尽管ACD高度可遗传,但已知的遗传变异解释了表型变异性的一小部分。这项研究的目的是使用小鼠菌株鉴定附加的ACD影响基因座。由86 N2和111 F2小鼠组成的队列是由重组近近近近近近将BXD24/ TYJ和野生衍生的铸造/ EIJ小鼠之间的十字产生的。使用前腔室光学相干断层扫描,在10-12周龄时表现出小鼠,基于93个全基因组SNP进行基因分型,并进行定量性状基因座(QTL)分析。在对所有小鼠的ACD分析中,六个基因座通过了p = 0.05的显着性阈值,并在多次回归分析后持续存在。这些是在染色体6、7、11、12、15和17上(分别为ACDQ6,ACDQ7,ACDQ11,ACDQ12,ACDQ15,ACDQ15和ACDQ17)。我们的发现证明了在小鼠中ACD遗传的定量多生成术,并确定了六个先前未识别的ACD影响基因座。我们采用了一种独特的方法来研究前室深度表型,通过使用小鼠作为遗传工具来检查这种连续分布的性状。
Maria Coromaina 1:2,3,3,*,Ashvin Ravi 3.4,4,5, Jaeyoung Kim 10.11,Gikashi Terao O。 'Connell 15.16,Mark Adolfsson 18,Martin Alda 19:20,Alfredson 21:Bernhard T. Baune Baune Bernhard T. Baune。 24,25,26, 36,37.38.39,Aiden Corin 40,Nina Dalkner 27,Udo Dannlowski 42,Franziska Tabea Fellendorf 27,Panagius Ferentinos 23:45,Andreas J. Forstner 37.39.46, 51,Melissa J.Maria Coromaina 1:2,3,3,*,Ashvin Ravi 3.4,4,5, Jaeyoung Kim 10.11,Gikashi TeraoO。'Connell 15.16,Mark Adolfsson 18,Martin Alda 19:20,Alfredson 21:Bernhard T. Baune Baune Bernhard T. Baune。 24,25,26, 36,37.38.39,Aiden Corin 40,Nina Dalkner 27,Udo Dannlowski 42,Franziska Tabea Fellendorf 27,Panagius Ferentinos 23:45,Andreas J. Forstner 37.39.46, 51,Melissa J.
摘要:蛋白质和糖含量在大豆中是重要的种子质量特征,因为它们可以提高大豆食品和饲料产品的价值和可持续性。因此,通过通过标记辅助选择来加速育种过程,鉴定大豆种子蛋白和糖含量的定量性状基因座(QTL)可以使植物育种者和大豆市场受益。在这项研究中,从R08-3221(高蛋白质和低蔗糖)和R07-2000(高蔗糖和低蛋白质)之间的十字架开发了重组近交系(RIL)。蛋白质含量的表型数据取自F2:4和F2:5代。DA7250 NIR分析仪和HPLC仪器用于分析总种子蛋白和蔗糖含量。基因型数据是使用Soysnp6k芯片分析生成的。在这项研究中总共确定了四个QTL。蛋白质含量的两个QTL位于11和20染色体上,两个与蔗糖含量相关的QTL位于染色体14和。11,后者与检测到的蛋白质QTL共定位,解释了研究人群中大豆种子中蛋白质和蔗糖含量的10%的表型变异。大豆育种计划可以使用结果来提高大豆种子质量。
1纽卡斯尔大学,纽卡斯尔的遗传医学研究所,泰恩NE1 3BZ,英国,2个学术医学中心,阿姆斯特丹,荷兰,荷兰3,心血管医学系,牛津大学,牛津大学,牛津大学,牛津大学1 2JD,英国,英国,4个Institut Genotypage Centry de Genotypage Centrique a e evie evie exom e Evique national de l'e'nnergie, d'Etude du多态性,荷兰(Humain),吉恩·多塞特(Jean Dausset),巴黎75010,法国6,西班牙巴塞罗那,巴塞罗那,西班牙7,新南威尔士州威斯特米德市的儿童医院,新南威尔士州,澳大利亚,澳大利亚8号,遗传学家,诺丁汉大学,诺斯特·诺斯特·诺斯特·诺斯特,英国莱斯特,泰恩医院的10个纽卡斯尔NHS基金会信托基金会,英国纽卡斯尔,布里斯托尔皇家儿童11号,英国布里斯托尔,英国布里斯托尔,12个里兹教学医院NHS NHS Trust,英国利兹,英国利兹,13个病童,多伦多医院,多伦多,多伦多,加拿大,加拿大14号儿童遗传学中心,贝尔·莱文氏菌,15 000,贝尔·莱文,e uuuuuunium and e e efore ef e efore ef e e efore ef e e efore ef e e efore e e;遗传学,苏黎世大学,苏黎世8006,瑞士1纽卡斯尔大学,纽卡斯尔的遗传医学研究所,泰恩NE1 3BZ,英国,2个学术医学中心,阿姆斯特丹,荷兰,荷兰3,心血管医学系,牛津大学,牛津大学,牛津大学,牛津大学1 2JD,英国,英国,4个Institut Genotypage Centry de Genotypage Centrique a e evie evie exom e Evique national de l'e'nnergie, d'Etude du多态性,荷兰(Humain),吉恩·多塞特(Jean Dausset),巴黎75010,法国6,西班牙巴塞罗那,巴塞罗那,西班牙7,新南威尔士州威斯特米德市的儿童医院,新南威尔士州,澳大利亚,澳大利亚8号,遗传学家,诺丁汉大学,诺斯特·诺斯特·诺斯特·诺斯特,英国莱斯特,泰恩医院的10个纽卡斯尔NHS基金会信托基金会,英国纽卡斯尔,布里斯托尔皇家儿童11号,英国布里斯托尔,英国布里斯托尔,12个里兹教学医院NHS NHS Trust,英国利兹,英国利兹,13个病童,多伦多医院,多伦多,多伦多,加拿大,加拿大14号儿童遗传学中心,贝尔·莱文氏菌,15 000,贝尔·莱文,e uuuuuunium and e e efore ef e efore ef e e efore ef e e efore ef e e efore e e;遗传学,苏黎世大学,苏黎世8006,瑞士
。CC-BY 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 4 月 29 日发布。;https://doi.org/10.1101/2020.04.29.067934 doi:bioRxiv 预印本
大豆是全球种子蛋白和油的主要来源,在种子中平均成分为40%蛋白质和20%的油。这项研究的目的是确定使用种子蛋白和油含量的定量性状基因座(QTL),该蛋白质和油含量利用跨平均蛋白质含量线构建的种群,PI 399084,PI 399084到另一个具有低蛋白质含量值的线,PI 507429,均来自USDA Soybeanbeanbeanebean soybeanbean soybeanbean soybeanbeanbean collection。在四年内,对重复的近交系(RIL)人群,PI 507429 X PI 399084进行了评估(2018-2021);使用近红外反射光谱分析种子的种子蛋白质和油含量。使用测序使用基因分型重新列出了重组近交系和两个父母。总共12,761个分子标记物来自基因分型,通过测序,Soysnp6k Beadchip和来自已知蛋白质QTL染色体区域的选择的简单序列重复(SSR)标记来映射。在2号染色体上鉴定出一个QTL,该QTL解释了种子蛋白含量的56.8%的56.8%,种子油含量最高可达43%。15染色体上鉴定出的另一个QTL解释了种子蛋白质变异的27.2%和种子油含量变化的41%。这项研究的蛋白质和油QTL及其相关分子标记物将在繁殖中有用,以改善大豆的营养质量。
在活细胞中基因组基因局的标签为研究基因组空间组织和基因相互作用提供了视觉证据。CRISPR/DCAS9(群集定期间隔短的短倾向重复序列/停用CAS9)通过DCAS9/SGRNA/荧光蛋白复合物与靶基因组基因座中重复序列的结合来标记基因基因。但是,核中存在许多荧光蛋白通常会引起高背景荧光读数。本研究旨在通过重新设计由DCAS9-Suntag-NLS(目标模块)和SCFV-SFGFP-NLS(信号模块)组成的当前CRISPR/DCAS9- SUNTAG标签系统来限制进入核的荧光模块的数量。我们删除了信号模块的核位置序列(NLS),并将EGFP的两个副本插入信号模块中。核的荧光强度与细胞质的荧光强度(N/C比)降低了71%,信号与背景(S/B比)的比率增加了1.6倍。该系统可以稳定地标记随机选择的基因组基因局基因局基因组基因座,少于9个重复序列。
大豆是全球种子蛋白和油的主要来源,在种子中平均成分为40%蛋白质和20%的油。这项研究的目的是确定使用种子蛋白和油含量的定量性状基因座(QTL),该蛋白质和油含量利用跨平均蛋白质含量线构建的种群,PI 399084,PI 399084到另一个具有低蛋白质含量值的线,PI 507429,均来自USDA Soybeanbeanbeanebean soybeanbean soybeanbean soybeanbeanbean collection。在四年内,对重复的近交系(RIL)人群,PI 507429 X PI 399084进行了评估(2018-2021);使用近红外反射光谱分析种子的种子蛋白质和油含量。使用测序使用基因分型重新列出了重组近交系和两个父母。总共12,761个分子标记物来自基因分型,通过测序,Soysnp6k Beadchip和来自已知蛋白质QTL染色体区域的选择的简单序列重复(SSR)标记来映射。在2号染色体上鉴定出一个QTL,该QTL解释了种子蛋白含量的56.8%的56.8%,种子油含量最高可达43%。15染色体上鉴定出的另一个QTL解释了种子蛋白质变异的27.2%和种子油含量变化的41%。这项研究的蛋白质和油QTL及其相关分子标记物将在繁殖中有用,以改善大豆的营养质量。
小黑麦的抽象冻结耐受性是导致其冬季坚韧性的主要特征。基因组区域的鉴定 - 定量性状基因座(QTL)和与冬季六倍体小黑细胞的冻结耐受性相关的分子标记 - 是这项研究的目的。为此,开发了一个新的遗传连锁图,该图是针对从“ hewo”×'magnat'f 1混合体衍生而来的92个双倍线的人口。在两个冬季,将这些线条与父母一起经过三次冻结耐受性测试。在自然秋季/冬季条件下生长和冷硬化,然后在受控条件下冻结。冻结耐受性被评估为植物回收(REC),冻结后的叶子和叶绿素荧光参数(JIP)的电解质泄漏(EL)。使用复合间隔映射(CIM)和单个标记分析(SMA)鉴定出几个荧光参数,电解质泄漏以及幸存植物百分比的三个一致QTL。第一个基因座QFR.HM-7A.1解释了冻结后电解质泄漏和植物恢复的9%。在4R和5R染色体上发现了两个QTL,解释了植物恢复中多达12%的变异,并通过选定的叶绿素荧光参数共享。最后,用于叶绿素荧光参数检测到主要基因座QCHL.HM-5A.1,该参数解释了表型变异的19.6%。此外,我们的结果证实了JIP测试是评估在不稳定的冬季环境下冻结耐受性的宝贵工具。在铬囊7a.1、4R和5R上共同存在的QTL清楚地表明,植物生存的生理和遗传关系在冷冻后,具有维持光系统II的最佳光化学活性和保存细胞膜完整性的能力。所鉴定的QTL中的基因包括编码BTR1样蛋白,跨膜螺旋蛋白(如钾通道)的跨膜螺旋蛋白和磷酸酯水解酶响应渗透胁迫以及参与基因表达调节的蛋白质的磷酸酯水解酶。