Arbelaez,J。D.,Dwiyanti,M。S.,Tandayu,E.,Llantada,K.,Jarana,A.1K-RICA(1K-RICE自定义扩增子)一种基于大米中遗传学和育种应用的新型基因分型SNP分析。米,12,1 - 15。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。 特质渗入项目的系统设计。 理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。 DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。特质渗入项目的系统设计。理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。DNA序列数据的快速而灵活的模拟。基因组研究,19,136 - 142。https:// doi。org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。回到未来:将MAS作为现代植物繁殖的工具。理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A.重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。植物生产科学,20,337 - 352。https://doi.org/10。1080/1343943X.2017.1391705 Collard,B.C. Y.,Gregorio,G。B.,G。B.,Thomson,M。J.,M。J.,R.转移水稻育种:在国际水稻研究所(IRRI)上重新设计灌溉育种管道。作物育种,遗传学和基因组学,1,E190008。https://doi.org/10.20900/cbgg20190008 Dar,M.H.,Zaidi,N。W.,Waza,S.A.,Verulkar,S.B.,S.B.,Ahmed,T.,Singh,P.K. K.,Kathiresan,R.M.,Singh,B.N.,Singh,U.S。,&Ismail,A.M。(2018)。在有利条件下没有收益罚款,为成功采用洪水大米铺平了道路。科学报告,8,9245。B.(2011)。ridge回归和其他用于基因组选择的内核,r tagkage rrblup。植物基因组,4,250 - 255。https://doi.org/10.3835/plantgenome2011.08.0024
摘要 背景 除遗传因素外,表观遗传学改变,尤其是与 DNA 甲基化相关的改变,在原发性干燥综合征 (pSS) 和系统性红斑狼疮等自身免疫性疾病的发病机制中发挥着关键作用。本研究旨在通过全基因组甲基化方法评估甲基化失调在 pSS 发病机制中的作用。 患者和方法 本研究纳入了 26 名女性 pSS 患者和 22 名年龄匹配的对照。利用磁珠从外周血单核细胞中分离 CD4+ T 细胞和 CD19+ B 细胞,并使用 In finium Human Methylation 450 K BeadChips 分析它们的全基因组 DNA 甲基化谱。患者和对照之间 DNA 甲基化中位差异至少为 7% 且 p<0.01 的探针被认为存在显著差异甲基化。结果与 T 细胞相比,甲基化改变主要存在于 B 细胞中。在 B 细胞中,观察到遗传风险位点中差异甲基化探针基因的富集,表明相同基因中同时存在遗传和表观遗传异常。B 细胞中的甲基化改变在某些特定途径中更为常见,包括干扰素调节基因,主要发生在自身抗体阳性的患者中。此外,活动性疾病患者的 B 细胞中差异甲基化探针基因的比例过高。结论本研究表明与 T 细胞相比,B 细胞中 DNA 甲基化模式的失调更为重要,强调了 B 细胞在疾病发病机制中的重要性。B 淋巴细胞和遗传风险位点中差异甲基化探针基因的重叠是一个新发现,凸显了它们在 pSS 中的重要性。
Köhler和Milstein(1975)对杂交瘤技术的开发通过在研究和开发工作中的常规使用单克隆抗体(MAB)来彻底改变了免疫学领域,从而导致了他们今天在诊所的成功应用。 尽管需要重组良好的制造实践生产技术来生产临床级别的mAB,但学术实验室和生物技术公司仍然依靠原始的杂交瘤系列来稳定而轻松地以适度的价格生产高抗体产量。 在我们自己的工作中,我们在使用杂交瘤衍生的mAB时面临着一个主要问题:无法控制产生的抗体形式,这是重组产生确实允许的灵活性。 我们着手通过直接在杂交瘤细胞的免疫球蛋白(IG)基因座中的基因工程抗体来消除这一障碍。 我们使用了簇状的定期间隔短的短膜重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)和同源指导修复(HDR)来修改抗体的格式[mAb或抗原结合片段(FAB')]和同型。 本协议在几乎没有动手的时间内描述了一种直接的方法,导致稳定的细胞系分泌高水平的工程抗体。 亲本杂交瘤细胞保持在培养中,并用针对IG基因座感兴趣的指导RNA(GRNA)转染了IG基因座和HDR模板,以敲击所需的插入物和抗生素耐药性基因。 通过施加抗生素压力,在遗传和蛋白质水平上扩展并表征抗性克隆,以产生改良的mAb而不是亲本蛋白。Köhler和Milstein(1975)对杂交瘤技术的开发通过在研究和开发工作中的常规使用单克隆抗体(MAB)来彻底改变了免疫学领域,从而导致了他们今天在诊所的成功应用。尽管需要重组良好的制造实践生产技术来生产临床级别的mAB,但学术实验室和生物技术公司仍然依靠原始的杂交瘤系列来稳定而轻松地以适度的价格生产高抗体产量。在我们自己的工作中,我们在使用杂交瘤衍生的mAB时面临着一个主要问题:无法控制产生的抗体形式,这是重组产生确实允许的灵活性。我们着手通过直接在杂交瘤细胞的免疫球蛋白(IG)基因座中的基因工程抗体来消除这一障碍。我们使用了簇状的定期间隔短的短膜重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)和同源指导修复(HDR)来修改抗体的格式[mAb或抗原结合片段(FAB')]和同型。本协议在几乎没有动手的时间内描述了一种直接的方法,导致稳定的细胞系分泌高水平的工程抗体。亲本杂交瘤细胞保持在培养中,并用针对IG基因座感兴趣的指导RNA(GRNA)转染了IG基因座和HDR模板,以敲击所需的插入物和抗生素耐药性基因。通过施加抗生素压力,在遗传和蛋白质水平上扩展并表征抗性克隆,以产生改良的mAb而不是亲本蛋白。最后,修饰的抗体在功能测定中的表征。To demonstrate the versatility of our strategy, we illustrate this protocol with examples where we have (i) exchanged the constant heavy region of the antibody, creating chimeric mAb of a novel isotype, (ii) truncated the antibody to create an antigenic peptide-fused Fab' fragment to produce a dendritic cell–targeted vaccine, and (iii) modified both the constant heavy (CH)1 domain of the heavy chain (HC)和恒定的Kappa(Cκ)轻链(LC)引入位点选择性修饰标签,以进一步衍生纯化的蛋白质。仅需要标准的实验室设备,这有助于其在各种实验室中的应用。我们希望该协议能够进一步传播我们的技术并帮助其他研究人员。
1 1,北卡罗来纳州立大学,北卡罗莱纳州立大学,北卡罗来纳州27695,美国2作物和土壤科学系,北卡罗来纳州立大学,北卡罗来纳州罗利,北卡罗来纳州27695,美国3 USDA农业研究服务,基因和生物学家研究单位,Raleigh for for Raleigh for for Raleigh for for Raleigh,NC 276695,Instict,Instict,Instict,Instict,密西西比州立大学,斯塔克维尔,MS 39762,美国5植物基因组学和分子繁殖实验室,国家生物技术与遗传工程学院,巴基斯坦工程与应用科学研究所,(NIBGE-C,PIEAS,PIEAS) 2006年,澳大利亚7基因组科学与社会研究所,德克萨斯农工大学,大学站,德克萨斯州77843,美国8 USDA农业研究服务,基因组学和生物信息信息研究单元,斯通维尔,MS 38776,美国9 USDA农业研究服务,Crop Lricultural Research Service,Crop Genetics Research Nut,Crops Genetics Research Nut,Stoneville,Stoneville,Stoneville,Stoneville,MS 3877776,美国 * docentersence,美国 * docenteresces, amanda.hulse-kemp@usda.gov(A.M.H.-K。); jodi.schef fler@usda.gov(J.A.S.)1,北卡罗来纳州立大学,北卡罗莱纳州立大学,北卡罗来纳州27695,美国2作物和土壤科学系,北卡罗来纳州立大学,北卡罗来纳州罗利,北卡罗来纳州27695,美国3 USDA农业研究服务,基因和生物学家研究单位,Raleigh for for Raleigh for for Raleigh for for Raleigh,NC 276695,Instict,Instict,Instict,Instict,密西西比州立大学,斯塔克维尔,MS 39762,美国5植物基因组学和分子繁殖实验室,国家生物技术与遗传工程学院,巴基斯坦工程与应用科学研究所,(NIBGE-C,PIEAS,PIEAS) 2006年,澳大利亚7基因组科学与社会研究所,德克萨斯农工大学,大学站,德克萨斯州77843,美国8 USDA农业研究服务,基因组学和生物信息信息研究单元,斯通维尔,MS 38776,美国9 USDA农业研究服务,Crop Lricultural Research Service,Crop Genetics Research Nut,Crops Genetics Research Nut,Stoneville,Stoneville,Stoneville,Stoneville,MS 3877776,美国 * docentersence,美国 * docenteresces, amanda.hulse-kemp@usda.gov(A.M.H.-K。); jodi.schef fler@usda.gov(J.A.S.)
白粉病是草莓生产中最有问题的疾病之一。迄今为止,很少有商业草莓品种被认为具有完全耐药性,因此,必须实施广泛的喷雾计划来控制病原体。在这里,使用大规模的场实验来确定各种草莓基因型面板中叶片和水果组织的白粉病耐药性状态。该表型数据用于识别与组织粉状霉菌耐药性相关的定量性状核苷酸(QTN)。总共发现六个稳定的QTN与叶面耐药性相关,其中1个QTN在7D染色体上与耐药性增加61%有关。与叶子的结果相反,没有QTN与抗果疾病抗性有关,并且在草莓果实上观察到了高度的耐药性,在水果和叶面症状之间未观察到遗传相关性,表明组织特异性反应。除了遗传基因座的鉴定之外,我们还证明了基因组选择可以导致跨基因型的叶面耐药性快速增长,并有可能捕获人群中存在的遗传叶子抗性的50%。迄今为止,自然抵抗的定量性质和与性状的遗传控制有关的知识的定量性质阻碍了草莓中强大的白粉病耐药性的繁殖。这些结果通过为社区提供可用于基因组知情育种的大量信息来解决这一短缺,实施可能会提供一种自然的抵抗策略来打击白粉病。
培养的花生被用作识别Ahmlo基因座的参考。我们的结果表明,鉴定了25个Ahmlo基因座,并分布在培养花生的铬味上。11个Ahmlo基因座位于A基因组上,其余14位在B-Genome上。在Ahmlo基因座的编码序列中观察到插入的内含子序列(4-14)和跨膜螺旋(4-8)的可变数量。此外,Ahmlo基因座的系统发育分析以及来自其他物种的同源物将Ahmlo基因座聚集成六个进化枝。将三个Ahmlo基因座聚集在已知的进化枝V中,以重新组合粉状易感性位点。此外,在特定AHMLO的启动子区域预测了四个核心启动子以及与PM敏感性有关的顺式调节元件。这些结果提供了有力的证据表明MLO基因座在培养的花生基因组中的鉴定和分布,并且可以使用识别的AHMLO基因座进行识别的特定ahmlo基因座,可用于丧失易感性研究。
在 GRCh37 之后发布的更新版本,包含了更多的改进,例如填补了序列间隙( gaps )、修正 了一些错误组装的区域、增加了着丝粒序列,并在某些区域增加了 alternate loci 来代表序列 的多样性。这些改进使得 GRCh38 在基因组分析中,尤其是在检测结构变异方面,比 GRCh37 具有更高的准确性和可靠性。 GRCh38 相比于 GRCh37 ,减少了一些 N (表示序列间隙或未注 释区域)的数量,增加了 GC 含量,并且扩大了外显子组的大小。
有证据表明,肠道微生物组的产后发育有助于儿童营养不良1-4。在这里,我们分析了来自微生物组指导的互补食品(MDCF-2)的随机对照试验的生物测量,该试验与在12-18个月大的班加拉德岛(12-18个月大的邦格拉德郡儿童中)相比,与热量更密集的常规辅助食品相比,其体重增加率较高。We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate MDCF-2和粪便中的结构。结果表明,与WLZ正相关的两个Prevotella copri mag是MDCF-2诱导的代谢途径表达的主要贡献者,该代谢途径涉及使用MDCF-2的成分聚糖。The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide- utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2)试验参与者中粪便碳水化合物结构的水平。这些关联表明,通过与生长相关的细菌分类群代谢的MDCF中鉴定生物活性聚糖结构将有助于指导有关其在急性营养不良儿童中使用的建议,并能够开发出其他配方。
GBS(测序基因分型)以前被证明是一种经济高效且可靠的方法,可用于对几种牧草进行基因分型 [1; 2]。GBS 通过使用限制性酶来限制要扩增和测序的基因组部分(基因座)来降低基因组的复杂性 [3]。在某些情况下,当基因座数量相对于测序工作量而言很高时,就会生成许多基因座缺失数据的基因分型矩阵。因此,需要优化 GBS 协议以获得最多的基因座数量和最少的缺失数据比例。我们测试了几种限制性酶,并评估了在紫苜蓿(Medicago sativa)和鸭茅(Dactylis glomerata)两个物种中获得的基因座数量。对于紫苜蓿,我们还确定了在 1 066 个种质中获得的 SNP 和缺失数据的数量。
(a) performing a targeted PCR amplification for more than 100 SNP loci on one or more chromosomes expected to be disomic in a single reaction mixture using more than 100 PCR primer pairs, wherein the reaction mixture comprises cell- free DNA extracted from a biological sample of a subject comprising DNA of mixed origin, wherein the DNA of mixed origin comprises DNA from the subject and DNA from a genetically distinct individual, wherein受试者和遗传上不同的个体都不是胎儿,其中混合起源的DNA包括来自移植的DNA,其中,放大的SNP基因座包括至少在1、2或3·'