摘要:利用 CRISPR/Cas 系统组件的基因组编辑方法已广泛应用于分子生物学、基础医学和基因工程。一种有前途的方法是通过修改基于 CRISPR/Cas 的基因组编辑系统的组件来提高其效率和特异性。在这里,我们设计并化学合成了含有修饰核苷酸(2'-O-甲基、2'-氟、LNA — 锁定核酸)或在某些位置含有脱氧核糖核苷酸的向导 RNA(crRNA、tracrRNA 和 sgRNA)。我们比较了它们对核酸酶消化的抵抗力,并检查了由这些修饰向导 RNA 引导的 CRISPR/Cas9 系统的 DNA 切割效率。用 2'-氟修饰或 LNA 核苷酸替换核糖核苷酸增加了 crRNA 的寿命,而其他类型的修饰不会改变它们的核酸酶抗性。 crRNA 或 tracrRNA 的修饰可保持 CRISPR/Cas9 系统的有效性。否则,具有修饰 sgRNA 的 CRISPR/Cas9 系统会显著降低 DNA 切割有效性。2'-氟修饰 crRNA 的系统 DNA 切割动力学常数较高。crRNA 的 2'-修饰还可降低体外 dsDNA 切割的脱靶效应。
摘要:如今,现代粒子物理实验的前端电子设备需要非常精确的时钟信号,以供读取链中的不同元素。时钟分配系统,模拟和数字转换器的时间,千兆串行链路是需要抖动非常低的时钟信号的组件的示例。拟议的项目旨在开发新的辐射耐受性相锁环(PLL)IP块,用于抖动低于10 ps的时钟信号生成,或者在PLL控制中添加数字路径的情况下更好。该块将在现代TSMC 65 nm技术中开发,以允许其在EIC项目中考虑的未来读数ASIC中,尤其是在我们团体目前正在开发的SALSA MPGD读数芯片中。PLL也可以是具有相调整功能的低功率独立时钟扇出ASIC的基础,这对于特定的EIC前端应用可能需要。该项目将涵盖IP块的仿真和设计及其原型制作和验证。
摘要:人工智能 (AI) 对于支持许多社会功能的基础设施越来越重要。交通、安全、能源、教育、工作场所、政府都将人工智能纳入其基础设施,以增强和/或保护。在本文中,我们认为,人工智能不仅被视为增强现有基础设施的工具,而且人工智能本身也正在成为当今和未来许多服务所依赖的基础设施。考虑到与人工智能的开发和使用相关的巨大环境后果(世界才刚刚开始了解),在基础设施概念的同时解决人工智能的必要性指向了碳锁定现象。碳锁定是指社会在技术、经济、政治和社会方面减少碳排放的能力受到限制。这些限制是由于根深蒂固的技术、制度和行为规范造成的固有惯性。也就是说,几乎社会每个领域对人工智能的采用都会产生难以摆脱的依赖和相互依赖。本文的关键可以归结为:在将人工智能概念化为基础设施时,我们可以认识到锁定的风险,不仅是碳锁定,而且是与实现人工智能基础设施的所有物理需求相关的锁定。这并不排除随着这些技术的兴起而出现解决方案的可能性;然而,考虑到这些观点,在被锁定到这个新的人工智能基础设施之前,我们必须问一些关于这些环境成本的棘手问题。
自 2016 年以来,美国每天发生 4000 起勒索软件攻击。受害者可能会在一瞬间发现他们的机器无法使用,数据无法访问,除非他们用无法追踪的加密货币支付赎金。在许多情况下,攻击者会下载受害者的数据并将其公开,除非支付赎金。通常,即使支付了赎金,攻击者也会发布或出售这些敏感数据。情况越来越糟。尽管攻击似乎只针对计算机系统,但它们可能会对物理世界产生长期影响,甚至破坏关键的供应线。例如,考虑一下 Colonial 管道攻击,它导致美国出现大规模区域性天然气短缺。或者考虑一下对马士基航运的毁灭性攻击,它导致世界各地的港口陷入停顿。但在沉默中,有一个更糟糕的问题正变得愈发明显。在匿名加密货币交易的掩护下,各种规模的公司甚至地方和联邦政府都在屈服于这些勒索软件窃贼的要求。
摘要:脑机接口 (BCI) 可以检测特定的脑电图模式并将其转换为外部设备的控制信号,为患有严重运动障碍的人提供与外界沟通和互动的替代/附加渠道。许多基于脑电图的 BCI 依赖于 P300 事件相关电位,主要是因为它们需要的用户训练时间相对较短,并且选择速度更快。本文提出了一种基于 P300 的便携式嵌入式 BCI 系统,该系统通过基于 FPGA(现场可编程门阵列)的嵌入式硬件平台实现,确保灵活性、可靠性和高性能。该系统在用户视觉刺激期间获取脑电图数据并实时处理这些数据,以正确检测和识别脑电图特征。BCI 系统旨在允许用户执行通信和家庭自动化控制。
机器学习(ML)模型在推进脑部计算机界面(BCI)信号处理以及增强物联网(IoT)移动设备的功能方面表现出了巨大的希望。通过将这些进步结合到全面的医疗保健监测和通信系统中,我们可能会显着改善锁定综合症患者的生活质量。为此,我们使用已知的ML模型提出了一种三层系统设计方法:数据收集,部署在物联网硬件上的本地集成系统以及管理管理。第一层重点是物联网传感器和大脑信号的非侵入性记录,它们的校准和数据收集以及数据处理。第二层侧重于汇总和指导数据,护理人员的警报系统以及用于个性化沟通的BCI。最后一级专注于问责制和基本管理工具。这项进行研究的研究证明了整合当前技术以改善对锁定患者的护理的可行性。
图 1:皮层内基于听觉拼写器的通信 – A) 在患者家中设置。信号由植入运动皮层的微电极阵列记录,并使用定制的 BCI 软件进行处理。B) 听觉神经反馈和拼写器的示意图。检测到动作电位并用于估计神经放电率。选择一个或多个通道,它们的放电率标准化和混合(参见在线方法)。字母组和字母等选项由合成语音呈现,然后是一段响应期,在此期间,要求患者调节标准化和混合的放电率,以获得正响应,降低以获得负响应。标准化速率线性映射到响应期间播放的短音的频率,以向患者提供反馈。患者必须将放电率保持在某个阈值以上(以下)通常 500 毫秒,以引起“是”(“否”)响应。在神经反馈模块中训练神经放电率的控制,其中指示患者匹配目标音调的频率。
图 1:皮层内基于听觉拼写器的通信 – A) 在患者家中设置。信号由植入运动皮层的微电极阵列记录,并使用定制的 BCI 软件进行处理。B) 听觉神经反馈和拼写器的示意图。检测到动作电位并用于估计神经放电率。选择一个或多个通道,它们的放电率标准化和混合(参见在线方法)。字母组和字母等选项由合成语音呈现,然后是一段响应期,在此期间,要求患者调节标准化和混合的放电率,以获得正响应,降低以获得负响应。标准化速率线性映射到响应期间播放的短音的频率,以向患者提供反馈。患者必须将放电率保持在某个阈值以上(以下)通常 500 毫秒,以引起“是”(“否”)响应。在神经反馈模块中训练神经放电率的控制,其中指示患者匹配目标音调的频率。
国家电网采取了应对性的短期措施,以避免封锁期间出现系统故障,例如允许从电网中切断嵌入式发电,并支付关闭风电和太阳能发电场的费用。尽管这些措施立竿见影,但 COVID-19 封锁凸显了灵活技术如何帮助管理电网、加强长期可再生能源渗透和降低系统成本,最终降低客户账单。例如,在 2019 年夏季,平衡系统的成本约为 3.33 亿英镑,而 2020 年同期,由于 COVID-19 的影响,预计成本将增加 5 亿英镑。*