皮质内脑机构界面(IBCIS)需要频繁地重新校准,以维持由于随着时间的推移积累而导致的神经活动变化而保持稳健的性能。补偿这种非机构性将使您无需进行监督的重新校准期,在这种情况下,用户无法自由使用其设备。在这里,我们介绍了一个隐藏的马尔可夫模型(HMM),以推断用户在IBCI使用期间朝着哪些目标转向。然后,我们使用这些推断的靶标对系统进行重新训练,从而使无监督的神经活动适应。我们的方法在两个月内以大规模的闭环模拟和人类IBCI用户的闭环模拟以优于最高的最新技术。利用跨越五年IBCI记录的离线数据集,我们进一步显示了最近提出的重新校准的数据分配匹配方法如何在长时间尺度上失败;只有目标推断方法似乎能够实现长期无监督的重新校准。我们的结果表明,如何使用任务结构将嘈杂的解码器引导成一个高度表现的解码器,从而克服了临床翻译BCI的主要障碍之一。
摘要青春期带来了社会背景与行为,结构性大脑发育以及焦虑和抑郁症状之间的动态相互作用。腹侧前额叶皮层(VMPFC)和杏仁核的体积变化率与青春期社会情感发展有关。通常,在这段时间内,VMPFC中的灰质体积(GMV)和杏仁核的生长变薄。社会,情感和神经解剖因素之间关联的方向性尚未解决,例如社会变量影响区域大脑发展的程度,反之亦然。补充说,性别之间的差异仍在进行辩论。在这项研究中,使用潜在变化评分模型研究了同性问题,家庭支持,社会经济压力,情绪症状,情绪症状,杏仁核量和VMPFC GMV之间的纵向关联。使用了基线多站点的欧洲研究(平均(SD)年龄= 14.40(0.38)年;女性%= 53.19)和随访2(平均(SD)年龄= 18.90(0.69)年龄,%女性= 53.19)。结果表明,同伴问题没有预测情绪症状,而是随着时间的流逝而一起改变。仅针对男性,VMPFC GMV,同伴问题和情绪症状之间存在正相关的变化,这表明VMPFC GMV较慢与社交和情感功能较差有关。发现对共同的社会,情感和大脑发展以及保护心理健康的途径有了广泛的了解。此外,在14岁时的家庭支持较大,与男性14至19岁之间的杏仁核量的增长较慢有关;先前的研究已经将较慢的杏仁核增长与精神健康障碍的韧性相关。
Schott彩色玻璃长期过滤器有27种标准的Schott彩色玻璃类型,可在超紫罗兰(UV),可见或近红外(NIR)光谱中提供切割波长。颜色玻璃基板在其波长范围内具有高光谱传播。Schott彩色玻璃长通滤波器设计具有标准的圆形和平方尺寸,可轻松整合到光学系统中,并具有1、2或3mm的厚度。可根据要求提供5到160mm的自定义尺寸。
在研究期间,观察到333例患者的总共493例PA菌血症实例。MDRPA的比例从21%(62/291)前流行降至9%(19/202)后p,调整后或0.38,95%CI 0.18-0.79,p = 0.01)。在最初的非MDRPA菌血症初期住院期间,MDRPA的发生很少见,不太可能比两周后发生。抗菌消耗模式在大流行开始后发生了变化,随着amikacin和ciprofloxacin的使用降低,头孢酸和美皮烯类的使用增加。MDRPA菌血症患者的总体不尸体死亡率仍然很高(28%),大流行前后没有实质性差异(调整后危险比1.57,95%CI 0.43-5.67,p = 0.49)。
摘要,安哥拉和纳米比亚附近的沿海地区以其东南大西洋的高产海洋生态系统而闻名。最近几十年,这些地区发生了重大的长期变化。在这项研究中,我们研究了整个年度周期中这些长期变化的可变性,并使用34年(1982- 2015年)的区域海洋模型模拟探索了基本机制。结果揭示了安哥拉和纳米比亚海岸沿海面温度(SST)趋势的明显季节性依赖性,其正面和负趋势交替。安哥拉沿海地区的长期变暖趋势主要是由澳大利亚春季和夏季(11月至1月)的明显变暖趋势解释,而纳米比亚的十年趋势是由于对澳大利亚冬季冷却趋势的平衡和澳大利亚的夏季变暖而产生的。对混合层温度变化的热预算分析表明,这些变化是通过沿海电流的长期调节来解释的。安哥拉变暖趋势主要是通过对极向沿海电流的强化来解释的,该电流将更多温暖的赤道水向安哥拉沿岸运送出来。在纳米比亚之外,变暖趋势归因于西北班格拉电流的减少,该电流从南部到纳米比亚海岸的凉爽水。沿海电流中的这些变化与沿赤道波导沿遥远的季节性沿海被困波的调节有关。这些长期变化可能对当地生态系统和渔业具有重大影响。
动力学运动图像(KMI)在运动皮层(称为事件相关的(DE) - 同时化,ERD/ERS)上产生特定的脑模式,使KMI可以通过电脑范围(BCI)通过电脑(EEGEEG)信号来检测到KMI。由于执行KMI任务会刺激突触可塑性,因此基于KMI的BCIS对许多需要长期KMI实践的应用(例如,运动训练或中风后康复)有望。但是,缺乏对基于KMI的BCI相互作用的研究,尤其是关于人际因素与运动模式变化之间的关系。这项试验研究旨在更好地理解给定个人的脑运动模式如何随着时间的流逝而变化,(ii)人际因素是否可能影响BCI实践,以及(iii)BCI用户的经验会随着时间的推移调节KMI任务(即ERDS和ERS)的脑运动模式。为此,我们在这项心理任务中招募了一名专家,他在五个月的时间内在26个不同的课程中进行了2080公里的时间。这项研究的原始性在于对来自EEG信号,BCI数据性能和13个不同调查的交叉引用数据的详细检查。结果表明,这种重复和延长的实践并没有减少他的福祉,尤其是对任务的自动化感。,我们观察到随着会话的积累,ERD振幅的进行性衰减和运动区域的浓度。所有这些元素都指向神经效率的现象。情绪,任务控制,饮食等)如果通过其他研究确认,这种现象可能会质疑BCI在向用户提供持续刺激时的质量。此外,这项试验研究的结果表明了可能影响运动皮层反应的洞察力(例如,和有希望的改善旨在长期使用的BCI的教学设计的机会。
亨廷顿疾病(HD)是一种致命的遗传疾病,其中大多数纹状体投射神经元(SPN)退化。有关HD发病机理的中心生物学问题是亨廷顿蛋白(HTT)基因中引起疾病的DNA重复膨胀(CAG N)如何导致数十年的明显潜伏期后神经变性。遗传的HTT等位基因具有更长的CAG重复急性疾病发作;这种重复的长度也随时间变化,产生了体细胞镶嵌性,调节DNA重复稳定性的基因可能会影响高清年龄。了解细胞的CAG重复长度与其生物学状态之间的关系,我们开发了一种单细胞方法,用于测量CAG重复长度以及全基因组RNA的表达。我们发现,HTT CAG重复在HD-vulnerable SPN中从40-45个CAG扩展到100-500+ CAG,而在其他纹状体细胞类型中则不扩展,而这些长的DNA重复扩展在不同时间通过单个SPN获得。令人惊讶的是,从40个CAGS的体细胞膨胀对基因表达没有明显的影响 - 但是具有150-500+ CAGS的神经元具有深刻的基因表达变化。这些表达的变化涉及数百个基因,并在进一步的CAG重复扩张旁边升级,侵蚀了阳性,然后神经元同一性的负面特征,并在衰老/凋亡基因的表达中达到顶峰。跨高清阶段的纹状体神经元丧失率反映了神经元进入该生物学变形状态的速率。我们得出的结论是,在HD过程中的任何时候,大多数神经元具有无害的(但不稳定的)亨廷顿基因,而HD发病机理几乎是神经元生命的DNA过程。我们的结果表明,纹状体神经元中的HTT CAG重复进行数十年的生物学安静膨胀,因此,由于它们异步越过高阈值,因此SPN会使SPN迅速和异步变性。
Lanxess是一家领先的专业化学公司,2023年销售额为67亿欧元。该公司目前在32个国家 /地区拥有约12,400名员工。Lanxess的核心业务是化学中间体,添加剂和消费者保护产品的开发,制造和营销。lanxess在道琼斯可持续性指数以及MSCI ESG和ISS ESG评级等方面取得了领先的地位,以及其对可持续性的承诺。前瞻性陈述本公司发行的陈述包含某些前瞻性陈述,包括公司的假设,意见,期望和观点,或者是从第三方来源引用的。各种已知和未知的风险,不确定性和其他因素可能会导致Lanxess AG的实际结果,财务状况,发展或绩效与此处表达或暗示的估计有重大不同。lanxess ag不能保证这种前瞻性陈述是没有错误的假设,也不承担对本演示文稿中表达的意见的未来准确性或预测发展的实际发生的责任。不应对本文所包含的任何信息,估计,目标和意见提出任何依赖,也不应依赖任何责任,并且对本文所包含的任何错误,遗漏或错误陈述所承担的任何责任,以及任何律师或任何律师的官员或任何律师的代表,或任何律师的代表。直接或间接地是由于本文档的使用。不应对本文所包含的任何信息,估计,目标和意见提出任何依赖,也不应依赖任何责任,并且对本文所包含的任何错误,遗漏或错误陈述所承担的任何责任,以及任何律师或任何律师的官员或任何律师的代表,或任何律师的代表。直接或间接地是由于本文档的使用。编辑的信息:所有Lanxess新闻发布及其随附的照片都可以在http://press.lanxess.com上找到。管理委员会和其他LANXESS图像材料的最新照片可在http://photos.lanxess.com上找到。您可以在http://lanxess.com/en/media/stories上找到有关Lanxess化学的更多信息。在X(Twitter),Facebook,LinkedIn和YouTube上关注我们:http://www.x.com/lanxess http://www.facebook.com/lanxess http://wwwwwwwwwwwwwwwwww.linkedin.com/compandin.com/-compandin comlec./company/lanxess http :/lanxess http:http:/
摘要 - 使用监视设备可以帮助避免受伤甚至死亡。当前,使用可穿戴传感器(例如运动传感器和其他传感器)来检测患者何时癫痫发作并警告他们的护理人员。但是,这些设备的开发阶段需要劳动密集型对收集的数据进行标记,这导致了开发可穿戴监测设备的困难。因此,必须采用更自动化的辅助方法来标记癫痫发作数据和可穿戴设备,以检测癫痫发作以进行日常监测。我们用建议的手镯从医院外癫痫发作的数据中收集了数据。癫痫发作后,要求受试者按下标记按钮。我们还提出了移动段(EAMS)算法的自动提取和注释,以排除非移动段。然后,我们使用机器学习方法使用了两层集合模型(TLEM)来对癫痫发作和非癫痫发作段进行分类,该段旨在处理不平衡的数据集。然后,由于这些数据集的不同不平衡,我们为整个(全天和晚上)癫痫发作案例和夜间癫痫发作检测案例分别构建了两个单独的TLEM模型。EAMS算法排除了93.9%的原始数据。TLEM模型
量子密钥分发可以提供能够抵御量子计算机破译的安全密钥。连续变量版本的量子密钥分发具有在大都市地区密钥速率更高以及可以使用可在室温下工作的标准电信元件的优势。然而,这些系统的传输距离(与离散变量系统相比)目前有限,并且被认为不适合长距离分发。在此,我们报告了通过适当控制过剩噪声和采用高效协调程序在 202.81 公里超低损耗光纤上进行长距离连续变量量子密钥分发的实验结果。这种破纪录的连续变量量子密钥分发的实现使之前的距离记录翻了一番,并指明了使用室温标准电信元件进行长距离和大规模安全量子密钥分发的道路。