1 Heilongjiang福利利用的主要实验室,在寒冷地区,动物科学与兽医学院,Heilongjiang Bayi农业大学,No./div>5 Xinyang Road,Daqing 163319,中国; zhuhuan1982@sina.com(H.Z. ); m_leslie@163.com(R.M. ); TXX09090416@163.com(X.T。) 2中国东北部低碳绿色农业的主要实验室,农业和农村事务部P. R.中国,海伦吉安吉·贝尼农业大学,编号 5 Xinyang Road,Daqing 163319,中国3理学院,海伦吉安吉·贝伊农业大学,编号 5 Xinyang Road,Daqing 163319,中国4 Bright Farming Co.,Ltd。,No. 1518,西江昌路,上海200436,中国; wujianhao@brightdairy.com 5 Heilongjiang农业填海学院的畜牧业和兽医学院,编号 中国赫本150038 Xiangfu Road 101; lichengliu2023@163.com 6 XI'AN建筑与技术大学土木工程学院,编号 Yanta Road 99,西安710064,中国; sunyanting98@163.com *通信:ylqu007@126.com;电话。 : +86-138-3696-10305 Xinyang Road,Daqing 163319,中国; zhuhuan1982@sina.com(H.Z.); m_leslie@163.com(R.M.); TXX09090416@163.com(X.T。)2中国东北部低碳绿色农业的主要实验室,农业和农村事务部P. R.中国,海伦吉安吉·贝尼农业大学,编号 5 Xinyang Road,Daqing 163319,中国3理学院,海伦吉安吉·贝伊农业大学,编号 5 Xinyang Road,Daqing 163319,中国4 Bright Farming Co.,Ltd。,No. 1518,西江昌路,上海200436,中国; wujianhao@brightdairy.com 5 Heilongjiang农业填海学院的畜牧业和兽医学院,编号 中国赫本150038 Xiangfu Road 101; lichengliu2023@163.com 6 XI'AN建筑与技术大学土木工程学院,编号 Yanta Road 99,西安710064,中国; sunyanting98@163.com *通信:ylqu007@126.com;电话。 : +86-138-3696-10302中国东北部低碳绿色农业的主要实验室,农业和农村事务部P. R.中国,海伦吉安吉·贝尼农业大学,编号5 Xinyang Road,Daqing 163319,中国3理学院,海伦吉安吉·贝伊农业大学,编号5 Xinyang Road,Daqing 163319,中国4 Bright Farming Co.,Ltd。,No. 1518,西江昌路,上海200436,中国; wujianhao@brightdairy.com 5 Heilongjiang农业填海学院的畜牧业和兽医学院,编号 中国赫本150038 Xiangfu Road 101; lichengliu2023@163.com 6 XI'AN建筑与技术大学土木工程学院,编号 Yanta Road 99,西安710064,中国; sunyanting98@163.com *通信:ylqu007@126.com;电话。 : +86-138-3696-10305 Xinyang Road,Daqing 163319,中国4 Bright Farming Co.,Ltd。,No.1518,西江昌路,上海200436,中国; wujianhao@brightdairy.com 5 Heilongjiang农业填海学院的畜牧业和兽医学院,编号中国赫本150038 Xiangfu Road 101; lichengliu2023@163.com 6 XI'AN建筑与技术大学土木工程学院,编号Yanta Road 99,西安710064,中国; sunyanting98@163.com *通信:ylqu007@126.com;电话。 : +86-138-3696-1030Yanta Road 99,西安710064,中国; sunyanting98@163.com *通信:ylqu007@126.com;电话。: +86-138-3696-1030
摘要 — 评估脑转移瘤放射治疗结果的标准临床方法是通过监测纵向 MRI 上的肿瘤大小变化。该评估需要在治疗前和治疗后的几次随访扫描中获取的许多体积图像上勾勒出肿瘤轮廓,而这项工作通常由肿瘤科医生手动完成,给临床工作流程带来了很大负担。在本文中,我们介绍了一种使用标准序列 MRI 自动评估脑转移瘤立体定向放射治疗 (SRT) 结果的新型系统。该系统的核心是一个基于深度学习的分割框架,可在序列 MRI 上高精度地纵向描绘肿瘤。然后自动分析肿瘤大小的纵向变化,以评估局部反应并检测 SRT 后可能出现的不良放射影响 (ARE)。该系统使用从 96 名患者(130 个肿瘤)获得的数据进行训练和优化,并在 20 名患者(22 个肿瘤;95 次 MRI 扫描)的独立测试集上进行评估。自动治疗结果评估与肿瘤专家的手动评估之间的比较表明,在检测局部控制/失败方面,准确度、灵敏度和特异性分别为 91%、89% 和 92%,在检测 ARE 方面,准确度、灵敏度和特异性分别为 91%、100% 和 89%。
变化蒙版。2、8-15 最近,基于监督深度学习的卷积神经网络模型已成为主要方法。16-20 尽管研究进展迅速,但在体素或病变水平上的检测灵敏度和特异性仍然中等(灵敏度和特异性;,0.8)。4、7 我们之前引入了统计变化检测(SDC)算法作为自动病变变化检测工具,以视觉上协助人类读者。该算法将最佳二元变化检测器应用于 2 个纵向配准的 FLAIR 图像的减法,以描绘出可能存在新病变的大脑区域。14 本研究的目的是评估在 SDC 的协助下,人类读者在受试者级别检测方面的表现是否有所改善,并与临床工作流程中操作的人类读者的基准进行比较。
摘要:2型糖尿病(T2D)的复杂发展为研究动物模型中疾病的进展和治疗带来了挑战。新开发的糖尿病大鼠模型,Zucker糖尿病Sprague Dawley(ZDSD)大鼠,与人类T2D的进展紧密相似。在这里,我们检查了雄性ZDSD大鼠T2D和肠道菌群中相关的变化的进展,并测试该模型是否可用于检查潜在疗法的效率,例如益生元,特定寡寡素化的,靶向了gut microbobiota。体重,肥胖,喂养/空腹血糖和胰岛素。葡萄糖和胰岛素耐受性测试,并使用16S rRNA基因测序在8、16和24周龄进行短链脂肪酸和微生物群分析时收集的粪便。在24周结束时,一半的大鼠补充了10%的寡果糖,并重复测试。我们观察到通过恶化的胰岛素和葡萄糖耐受性,从健康/非糖尿病患者到糖尿病前期和公开糖尿病态的过渡,进食/禁食葡萄糖的显着增加,然后显着减少循环胰岛素。与健康和糖尿病前期相比,在公开糖尿病状态下,乙酸和丙酸酯水平显着增加。微生物群分析表明,与糖尿病前和糖尿病态相比,健康型和β多样性的变化以及健康属的变化以及特定细菌属的变化发生了变化。寡聚果糖治疗改善了葡萄糖耐受性,并在晚期糖尿病期间改变了ZDSD大鼠的盲肠菌群。这些发现强调了ZDSD大鼠作为T2D模型的转化潜力,并突出了可能影响疾病发展或作为T2D的生物标志物的潜在肠道细菌。此外,寡果糖处理能够中度改善葡萄糖稳态。
欺凌受害与在成年期间自杀的风险增加了一倍。两项纵向脑形态计量学研究确定了梭形的回和壳骨很容易受到欺凌。尚无研究确定神经改变如何介导欺凌对认知的影响。我们从青春期脑认知发展研究数据集中评估了护理人员报告的欺凌(n = 323)的参与者(n = 323),并匹配的非爆炸对照(n = 322),以识别与正在进行的欺凌受害者相关的脑形态变化的变化,并确定这种变化是否介导了对认知的影响。Bullied children (38.7% girls, 47.7% racial minorities, 9.88 ± 0.62 years at baseline) had poorer cognitive performance (P < 0.05), larger right hippocampus (P = 0.036), left entorhinal cortex, left superior parietal cortex, and right fusiform gyrus volumes (all P < 0.05), as well as larger surface areas in multiple other额叶,顶叶和枕皮层。较薄的皮质。重要的是,梭形皮质中的较大表面积部分受到部分抑制(12-16%),并且部分抑制了前心皮质,(7%)欺凌对认知的影响(p <0.05)。这些发现突出了长时间欺凌受害对脑形态计量和认知的负面影响。
变化蒙版。2、8-15 最近,基于监督深度学习的卷积神经网络模型已成为主要方法。16-20 尽管研究进展迅速,但在体素或病变水平上的检测灵敏度和特异性仍然中等(灵敏度和特异性;,0.8)。4、7 我们之前引入了统计变化检测(SDC)算法作为自动病变变化检测工具,以视觉上协助人类读者。该算法将最佳二元变化检测器应用于 2 个纵向配准的 FLAIR 图像的减法,以描绘出可能存在新病变的大脑区域。14 本研究的目的是评估在 SDC 的协助下,人类读者在受试者级别检测方面的表现是否有所改善,并与临床工作流程中操作的人类读者的基准进行比较。
此预印本的版权持有人(此版本发布于2023年4月7日。; https://doi.org/10.1101/2023.04.03.535504 doi:biorxiv Preprint
35%的肾衰竭患者,接受透析或肾脏移植治疗。 黑人/非洲35%的肾衰竭患者,接受透析或肾脏移植治疗。黑人/非洲
德国神经病学系的莱比锡大学医学中心,B Max Planck人类认知与脑科学研究所,神经病学系,莱比锡,德国莱比锡认知神经病学诊所,莱比锡大学医院,莱比锡,德国莱比锡,德国D Banner Alzheimer的Alzheimer Institutes Phoenix, AZ, USA g School of Mathematics and Statistics (KC), Neurodegenerative Disease Research Center (EMR), Arizona State University, USA h Department of Neurology, College of Medicine – Phoenix (KC), Department of Psychiatry (EMR), University of Arizona, USA e Neurogenomics Division, Translational Genomics Research Institute, University of Arizona, and Arizona State University, Phoenix,美国亚利桑那州立大学I横幅 - 阿里佐纳州立大学神经退行性疾病研究中心,生物设计学院,亚利桑那州立大学,大学,亚利桑那州,美国亚利桑那州坦佩市J.
摘要 — 考虑到机械系统动力学分析的多体方法,本文旨在构建一个简单的计算机模型来描述执行纵向运动的固定翼飞机的动力学。为此,分析了一种简化的飞行器模型,该模型没有控制面,具有轴向推力,并且空气动力学作用有限。然后使用 Digital DATCOM 软件对气动系数进行建模,同时将升降舵也视为控制面。首先,在多体动力学的背景下研究飞机动力学。然后,分析了被视为本文示例的案例研究,即 Cessna 172 Skyhawk 飞机。通过对外部施加的作用和气动系数进行建模,随后分析了飞行起飞阶段背后的基本力学。在本文中,使用拉格朗日公式方法驱动描述示例动态行为的运动方程。然后在 MATLAB 环境中构建的计算机代码中实现了示例的动态模型。通过这样做,该过程的目标是尽可能准确地开发 Cessna 172 Skyhawk 飞机的虚拟模型。如本文使用数值模拟所示,本文分析的案例研究的计算机模型能够模拟