随着基于人工智能 (AI) 的产品和服务在各个行业中激增,一个最重要的问题浮出水面:这些系统应该包括人类还是应该自主运行?这个问题是我们现在认为理所当然的许多服务和产品的基础。例如,考虑使用谷歌地图。我们中的许多人现在都认为这种基于人工智能的服务是理所当然的,当它指引我们从一个地方到另一个地方时,我们几乎不用考虑它会带我们去哪里。这个工具背后没有人类向导或主持人;我们甚至不能像在银行那样打电话,要求找人谈谈走错路或被带到了目的地以外的地方。如果出了问题,没有人可以帮助我们,也没有人可以投诉。
在2020-AUG-1 BCDAIBETES开始支持开源(DIY)人工胰腺系统的内部装置(AID,也称为“自动胰岛素输送”辅助工具),并使用无管的Omnipod Dash-Dash-Dash-DASH-DASH-DEXCOM G6和iPhone&Android AID算法。这是带有手机运行Androidaps的设置的图片。尽管不是加拿大卫生批准的,但BCDIABETES认为当前版本的LOOP(Master Branch)是最佳入门级开源援助,可用于大多数具有良好家庭支持的成年人和儿童。Loop是一种保守算法,我们估计迄今为止,我们对全球35,000多名个人和1320 BCDiabetes客户的估计已安装。在BCDIABETES上,其各种口味中的环比零售辅助工具更优选,因为BC Pharmacare对Omnipod System&Dexcom G6/7的大多数给定覆盖范围更负担得起,并且仅部分覆盖零售援助组件。
在AI系统中,最有效的机器学习模型取决于人类和机器都制备的数据。正确设置时,它们允许双方通过称为“循环中的用户”(UIL)的机制连续相互作用。任何收集数据的业务都可以通过在需要的情况下(例如员工费用)在需要的情况下采用hitl模型来效力充当其自己的智能系统。在Finfo,我们帮助公司确定问题费用类别并采用HITL报告技术来对抗它们。标准模型看起来像这样:从输入到输出的直接线路,在这种情况下,员工的费用和费用的支出影响。数据正在收集但未使用,而不是回到系统中以鼓励效率。
摘要 - 自主驾驶有可能为更有效的未来移动性奠定基础,要求研究领域通过安全,可靠和透明的驾驶来建立信任。大语言模型(LLM)具有推理能力和自然语言的理解,具有作为可以与人类互动和为人类驾驶员设计的环境互动的自我运动计划的普遍决策者的潜力。尽管这条研究途径很有希望,但当前的自动驾驶方法通过结合3D空间接地以及LLMS的发展和语言能力来挑战。我们介绍了BEV-驱动程序,这是一种基于LLM的模型,用于Carla中的端到端闭环驾驶,它利用潜在的BEV功能作为感知输入。bevdriver包括一个BEV编码器,以有效地处理多视图图像和3D LiDAR点云。在一个共同的潜在空间中,BEV特征通过Q-前者传播,以与自然语言指示保持一致,并传递给LLM,该LLM预测和计划在考虑导航说明和关键场景的同时,可以精确的未来轨迹。在Langauto基准测试中,与SOTA方法相比,我们的模型在驾驶得分上的性能高达18.9%。
特刊“交互式学习:为主动人机交互的循环系统设计中的人类设计”已经扩展了!潜在的主题:认知负载 - 可以使用模型来调整决策。应该预培训(即,为普通用户学习),而应进行交互或个性化的数量(即,对特定用户进行微调)?响应设计和相互作用的方式 - 使用自然/隐式反馈信号,例如自然语言,语音,眼动,面部表情和互动过程中的手势。有效的相互作用 - 速度和相互作用数量。人类的偏好或内部奖励是非平稳的,并且会随着时间的流逝而变化。限制可能是由于缺乏信任,可用性和生产力,尤其是在适应不可预见的阶级和任务环境中的变化时。特定的系统体系结构 - 问题和机器学习应用程序;人类信任问题不同的建筑问题。案例研究 - 例如,GIS中的图像分割和区域数字化之类的案例研究是可取的。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:在数据的空前可用性的驱动下,机器学习已成为行业和科学的普遍性和变革性技术。其对海洋科学的重要性已被赋予了联合国海洋十年的目标之一。虽然收集了增加数量的声学海洋数据以进行研究和监测目的,并且机器学习方法可以实现自动处理和分析声学数据,但它们需要由专家注释或标记的大型培训数据集。因此,解决标记数据的相对稀缺性,除了增加数据分析和处理能力外,还有主要推力区域之一。解决标签稀缺的一种方法是专家在循环的方法,它允许对有限和不平衡数据有效分析。它的优势是通过我们新颖的基于学习的深度专家框架来证明的,用于自动检测Echo Sounder数据中的湍流唤醒签名。使用机器学习算法,例如本研究中提出的算法,大大提高了分析大量声学数据的能力。这将是实现海洋科学中越来越多的声学数据的全部潜力的第一步。
硬件在环 (HIL) 仿真是一种强大的技术,用于开发和测试复杂的实时嵌入式系统,例如电池管理系统 (BMS)。HIL 仿真涉及将控制器(在本例中为 BMS)连接到它将控制的系统的实时仿真。这使 BMS 能够与模拟真实世界条件的虚拟环境进行交互。HIL 如何为 BMS 工作?• 电池动态仿真:BMS 与模拟电池模型交互,该模型复制实际电池单元的行为,包括充电/放电循环、温度变化和其他关键参数。• 实时测试:BMS 算法经过实时测试,使工程师能够评估系统如何响应各种场景,例如过度充电、深度放电和故障情况。• 及早发现问题:通过在开发过程的早期进行测试,可以在潜在问题变得代价高昂或危险之前发现并解决它们。
脑机接口 (BCI) 的研究已有 30 年左右的历史。然而,即便如此,在实验室环境中完成的大部分工作也很少应用于目标终端用户,例如患有严重运动障碍的人。研究界的主要目标应该是最终将 BCI 带入终端用户可以获利并获得独立和生活质量的状态。将该领域推向实际应用的一种可能性是由 CYBATHLON [由苏黎世联邦理工学院(Riener,2016)发起] 和其他竞赛推动的。这样的竞赛挑战研究机构和行业在现实世界中展示他们的发展并突破研究的界限。在 CYBATHLON(Novak 等,2017)的 BCI 竞赛中,终端用户是飞行员,他们通过使用多类 BCI 控制化身与其他飞行员竞赛。此类竞赛以及其他竞赛对开发人员的要求极高,因为 BCI 系统必须在竞赛时正常工作,在实验室之外的陌生环境中,周围有观众、有噪音,并且没有第二次机会。在中国,BCI 竞赛于 2010 年首次由清华大学组织。自 2017 年起,BCI 竞赛由中国电子学会作为世界机器人大会的一部分组织。每年都有数千名用户参加。BCI 竞赛包含两部分:用户竞赛和算法竞赛。用户竞赛的获胜者随后参加算法竞赛,以测试 BCI 研究团队上传的算法的性能。通过这些 BCI 竞赛,获得了大量用于进一步研究的 BCI 数据,这些数据已用于推动 BCI 算法的进步。在不久的将来,这些数据将在线发布,供世界各地的 BCI 研究人员使用。当然,另一个极其重要的因素是团队为竞赛所做的准备。具体来说,应该训练最终用户飞行员产生稳定和准确的心理状态,产生一致的大脑振荡来控制 BCI,即使在诸如 CYBATHLON 竞技场等潜在的压力环境中也是如此。