在广阔的kerr显微镜中,moke(磁光kerr效应)的磁化环的测量值是可以很容易地记录沿环路的相关域图像的优势。由于显微镜的物镜镜头暴露于磁场,但是,循环通常会因物镜中发生的偏振光的非线性法拉第旋转而严重扭曲,并叠加到moke信号中。在本文中引入了基于电动分析仪的实验方法,该方法允许补偿法拉第的贡献,从而导致纯Moke循环。配备了该技术的宽阔领域的Kerr显微镜与基于激光的摩克磁力计一样,但还可以构成域图像,从而为循环解释提供了基础。
侵入式设备 ...................................................................102 8.6.1.1 感应线圈 ..............................................................102 8.6.1.2 气动管 ..............................................................102 8.6.1.3 压电传感器 ..............................................................103 8.6.1.4 弯曲板 ......................................................................103 8.6.1.5 磁性探测器 .............................................................103
• 串联/并联冷板:去离子水(可靠性和维护问题) • 单独的冷板回路(模块化,与液位转换器集成,需要二次回路) • 高级冷却(材料、冷却剂类型、无泵)
平行运动学操纵器(PKM)的特征是封闭的运动环,由于四肢平行排列,但也是由于四肢中存在运动环。此外,许多PKM都是由通过串行组合运动环构建的四肢构建的。这样的四肢称为混合动力,形成了特定类别的复杂四肢。设计和基于模型的控制需要精确的动态PKM模型,而无需简化模型。动力学建模需要在PKM的标准运动学建模中具有运动关系,在该模型中,仅计算了操纵器的正向和逆运动解(相关输入和输出运动)。这与杂种四肢的PKM更加涉及。在本文中采用模块化建模方法,分别处理四肢,并且动作的单个动态方程(EOM)随后将其组装到整体模型中。运动模型的关键是四肢内单个循环的约束分辨率。此局部约束分辨率是一般约束嵌入技术的特殊情况。提出的方法最终允许对一般PKM进行系统的建模。该方法用于IRSBOT-2,其中每个肢体包含两个独立的回路。©2022作者。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
经济学家的均衡概念具有一些非常有用的知识内容,并且在短期内也有效,但实际上世界是动态的。这种动态,其中全球化的特定推动力是这里关注的焦点,对为其提供服务的航空运输等行业具有影响。但也存在反馈循环,因为航空运输的发展可以塑造全球化和相关进程的形式和速度。实际上,虽然对航空运输的需求是衍生的,但提供航空运输服务的制度背景会对经济体系产生连锁反应。这些反馈循环可能带来直接的经济、政治和社会影响,例如伴随贸易和个人流动性的增强,但它们也可能是间接的,例如通过航空运输对环境的影响。
摘要本文介绍了电池储能系统(BESS)的中型电压分配网络(MV-DN)的黑色启动。BES由一个两级电压源逆变器接口MV-DN组成,该逆变器限制了过电流的能力。另一方面,MV-DN通常包括几个升级和降低的变压器,它们正在绘制交感神经液在通电阶段中。因此,在MV-DN Island操作过程中,执行黑色的主要困难在于逆变器必须同时控制网络电压及其输出电流。本文提供了两种控制方法,以控制MV-DN黑色启动过程中的inrush电流。所提出的控制方案由固定参考框架中的下垂,电压和电流循环组成。下垂环用于生成电压参考。中间电压和内部电流循环均设计用于输出电压调节,电流参考生成以及电流跟踪。新的参考修改器包含在下垂和电压循环中,以限制Inrush电流。通过1 mva bess在芬兰对芬兰的Ingå-DN进行了实验测试,以实验测试了其性能,并根据冲洗电流值和电压质量比较其性能。获得的结果证明,两种方法都能够在稳态中使用固定电压为负载以及考虑到逆流过电流极限的固定电压以及限制变压器的冲洗电流。
摘要研究目的是通过电力茎教育来发展5年级学生的创造力。2020年第二学期的Khon Kaen省有15名学生参加了这项研究。采取行动研究是通过树木循环实施的,以提高学生的创造力。电力上5级的物理内容由简单的电路,导体,绝缘子,开关,串联和平行的电池连接,串联和平行电路以及电动机连接。将十二个课程分为三个动作循环。每个课程的循环包括三个预测 - 访问式解释(POE)课程,以及一个工程设计过程的课程,用于设计各种作品,以提高每个循环结束时的电力创造力。学生们精通设计各种作品,以解决特定教室的情况引起的问题,并以特定的理由选择了创作作品的材料,并具有灵活性和阐述。在动作循环的最后一堂课中,收集了数据,以显示学生如何提高其创造力。学生的作品及其演示文稿通过创造力的标准评分在四个维度,流利性,灵活性和阐述的四个维度上进行了评估。结果表明,所有五组学生都提高了学生的创造力。在每组学生中都发现了独创性。他们的创作与同学不同。学生从循环中获得更高的流利性,灵活性和阐述,到循环的三个动作循环。
另一种已应用于电力系统的模块化状态空间建模方法是组件连接法 (CCM) [23],其中系统被分解为多个组件,这些组件的互连基于其输入和输出的代数关系建模为线性代数矩阵。因此,可以通过将线性代数矩阵与组件的各个状态空间模型相结合来获得系统状态空间模型 [24]。与 [22] 中报道的方法相比,该方法具有更好的模块化和可扩展性,并且显著减少了可以明确定义设备互连的电力网络的计算工作量。然而,CCM 仍然不易用于建模 VSC 的控制回路,因为外部控制回路的线性化引入了额外的子状态空间模型和互连,这些子状态空间模型和互连与物理子状态空间模型和互连相比是隐式的。因此,仍然缺少一种可以表征控制回路影响的模块化状态空间建模方法。
摘要 本文探讨了预测处理的大脑结构的进化。我们认为,预测感知和行动的大脑机制不是我们这些高级生物在进化后期添加的。相反,它们是从简单的预测回路(如自主神经反射和运动反射)逐渐发展而来的,这些预测回路是我们早期进化祖先的遗产,也是解决其自适应调节基本问题的关键。我们用包含不断增加的层次宽度和深度的预测回路的生成模型来正式描述从简单到复杂的大脑。这些可能从一个简单的稳态主题开始,并在进化过程中以四种主要方式进行阐述:包括预测控制多模态扩展为异质回路;其复制形成多个感觉运动回路,从而扩展了动物的行为范围;并逐渐赋予生成模型层次深度(以处理在不同空间尺度上展开的世界的各个方面)和时间深度(以面向未来的方式选择计划)。反过来,这些阐述为解决日益复杂的动物所面临的生物调控问题提供了保障。我们的提议将有关预测处理的神经科学理论与不同动物物种大脑结构的进化和比较数据结合起来。关键词:预测处理;主动推理;大脑进化;大脑结构;模型选择;自然选择。