分割算法的疗效经常因拓扑错误,连接中断和空隙等拓扑错误而受到损害。为了解决这一问题,我们引入了一种新颖的损失函数,即拓扑 - 意识局灶性损失(TAFL),该功能将基于基于地面真实和预测段蒙版的持久性图表之间的拓扑结构术语与拓扑结构术语结合在一起。通过实施与地面真理相同的拓扑结构,拓扑的约束可以有效地解决拓扑结构,而焦点损失可以解决阶级失衡。我们首先是从地面真理和预测的分割掩模的过滤的立方复合物中构造持久图。随后,我们利用sindhorn-knopp算法来确定两个持久图之间的最佳运输计划。最终的运输计划最小化了将质量从一个分布到另一个分布的运输成本,并在两个持久图中的点之间提供了映射。然后,我们根据该旅行计划计算沃斯堡的距离,以测量地面真相和预测的面具之间的拓扑差异。我们通过训练3D U-NET与MICCAI脑肿瘤分割(BRATS)CHALLENE验证数据集来评估我们的方法,该数据需要准确地分割3D MRI扫描,从而整合各种方式,以精确鉴定和跟踪恶性脑肿瘤。然后,我们证明,通过添加拓扑约束作为惩罚项,通过将焦点损失正规化来提高分段性能的质量。
引用Chang,Huibin,Jie Xu,Luke A. Macqueen,Zeynep Aytac,Michael M. Peters,John F. Zimmerman,Tao Xu,Philip Demokritou和Kevin Kit Parker。2022。“用可生物降解的抗菌pullulan纤维进行高通量涂层延长保质期并减少鳄梨模型中的体重减轻。”自然食品3(6):428–36。
摘要:1944年9月,英国成为历史上第一个受到持续弹道导弹运动的国家。V-2火箭是德国一项20年研究计划的高潮,但运营历史少于七个月,对战争的结果没有明显的影响。对抗导弹是两到三年的英国情报优先事项,但是尽管有地震技术变化,但英国仍在谨慎地利用这些技术和背后的科学家。可以说,这是对英国太空野心和战略能力的长期阴影。本文从运营和情报的角度考虑了V -2的发展和运营历史,然后考虑了利用技术的挑战和成果,这些挑战是在战后紧缩和竞争战略要求的背景下设定的。
抽象的超分辨率(SR)是一个不当的反问题,其中具有给定低分辨率图像的可行解决方案集的大小非常大。已经提出了许多算法,以在可行的解决方案中找到一种“好”解决方案,这些解决方案在忠诚度和感知质量之间取得了平衡。不幸的是,所有已知方法都会生成伪影和幻觉,同时试图重建高频(HF)图像细节。一个有趣的问题是:模型可以学会将真实图像细节与文物区分开吗?尽管有些重点侧重于细节和影响的分化,但这是一个非常具有挑战性的问题,并且尚待找到满意的解决方案。本文表明,与RGB域或傅立叶空间损耗相比,使用小波域损失功能训练基于GAN的SR模型可以更好地学习真正的HF细节与伪像的表征。尽管以前在文献中已经使用了小波域损失,但在SR任务的背景下没有使用它们。更具体地说,我们仅在HF小波子带上而不是在RGB图像上训练鉴别器,并且发电机受到小波子带的忠诚度损失的训练,以使其对结构的规模和方向敏感。广泛的实验结果表明,我们的模型根据多种措施和视觉评估实现了更好的感知延续权权衡。
为了证实这些数据,我们验证了Lig3耗竭在R26 creert2; BRCA1 SCO/ - ; TRP53 - / - 157
由于近期学校长期和反复停课,建议依赖于对类似情况的研究的推断和应用,例如旷课、暑期学习计划以及飓风和战争等有限地理区域内重大事件的影响和恢复。教育专家整合研究建议,以下要素有助于学生恢复学习损失。值得注意的是,有证据证明每个要素的有效性(参见每个要素之后的研究),但目前正在研究这些要素一起实施时的有效性。以下要素来自各种文章和研究,这些文章和研究阐明了因学校长期和反复停课而恢复学习应包括: