1。控制系统设计。控制系统和系统配置的基本组件。2。系统的标准数学模型:输入输出模型,状态空间模型。3。动态系统线性化,并评估雅各布基质。4。框图转换:系列,并行和反馈连接。5。系统的结构特性:可控性和可观察性。6。一阶和二阶系统:传输功能,步骤响应,冲动响应。7。连续时间系统的稳定性:定义,S-平面根位置,Routh-Hurwitz稳定性标准。8。Lyapunov确定连续时间系统稳定性的方法。9。Nyquist稳定性标准。时间延迟系统的稳定性。10。系统的性能特征(规格):过冲,沉降时间,稳态误差,相对稳定性,阻尼比。11。稳态准确性。具有不同类型编号(集成数)的Unity反馈控制系统中的稳态错误。12。标准特征多项式:Butterworth多项式,二项式多项式。13。通过模态控制(POL放置)对线性系统的稳定。 14。 连续时间系统(Luenberger观察者)的全顺序和降低状态观察者。通过模态控制(POL放置)对线性系统的稳定。14。连续时间系统(Luenberger观察者)的全顺序和降低状态观察者。
摘要该论文报告了对射射HALL探针(RHP)磁性诊断系统的系统评估,该诊断系统基于INSB半导体薄膜,并描述了导致创新磁探针概念的建议的路径。在最近的氘 - 帝国实验运动中,RHP操作的相关说明还提供了,显示了在类似Iter的强烈中子通量下正确的操作。对RHP系统进行系统评估的期间范围从2009年10月到2021年3月,在此期间,该机器产生了超过19,000个脉冲。RHP系统由六个三维大厅探针组成,这些探针具有内置的重新校准能力,这要归功于在量身定制的自动预脉冲预校准序列中产生局部已知场的微糖苷,也可以手动启动。在脉冲过程中,当记录其信号时,微苯酚也可以用作电感传感器。此外,该系统在探针位置提供了温度测量值,这些温度也被连续记录。评估证明了RHP系统的准确长期操作。所有诊断通道可靠地提供脉冲预校准数据和脉冲信号,并且保留了霍尔传感器的原始灵敏度。混合探针有望提供感应和霍尔传感技术的优势,本质上是单个ITER磁性离散探针的相同包装大小。,它将解决积分器漂移的问题,以解决持久的燃烧等离子体排放。集成考虑和数据融合分析导致提出高性能,紧凑,宽带,混合场探针,由电感线圈和HALL传感器组合组成,由为迭代或替代性概念开发的线圈技术制造,并具有改善的辐射热度。通过Luenberger-Kalman观察者处理的线圈和霍尔传感器产生的信号提供了一个磁场测量值,该测量值是不钻孔和低噪声的。由于这些原因,已提出混合探针作为未来燃烧的血浆实验和示范融合发电厂的潜在主要磁性诊断传感器。