[1] Stuart Allan。2011 年。《引言:数字时代的科学新闻》。《新闻学》12,7(2011 年 10 月),771–777。https://doi.org/10.1177/1464884911412688 [2] Josh Anderson 和 Anthony Dudo。2023 年。《来自战壕的观点:与记者关于报道科学新闻的访谈》。《科学传播》(2023 年 1 月),107554702211491。https://doi.org/10.1177/10755470221149156 [3] Aviv Barnoy 和 Zvi Reich。2019 年。验证的时间、原因、方式和结果。新闻研究 20, 16 (2019 年 12 月),2312–2330。https://doi.org/10.1080/1461670X.2019.1593881 出版商:Routledge _eprint:https://doi.org/10.1080/1461670X.2019.1593881。[4] Emily Bender 和 Chirag Shah。2022 年。无所不知的机器是一种幻想。https://iai.tv/articles/all-knowing-machines-are-a-fantasy-auid-2334 [5] Emily M. Bender。2022 年。《华盛顿邮报》对 ChatGPT 的炒作。 https://medium.com/@emilymenonbender/chatgpt-hype-in-the-washington-post- c4e1355ed31b [6] Emily M. Bender。2022 年。纽约时报杂志上的 AI 文章:抵制留下深刻印象的冲动。https://medium.com/@emilymenonbender/on-nyt-magazine- on-ai-resist-the-urge-to-be-impressed-3d92fd9a0edd [7] Emily M. Bender、Timnit Gebru、Angelina McMillan-Major 和 Shmargaret Shmitchell。2021 年。论随机鹦鹉的危险:语言模型会太大吗?。在 2021 年 ACM 公平、问责和透明度会议论文集上。ACM,加拿大虚拟活动,610–623。 https://doi.org/10.1145/3442188.3445922 [8] Deborah Blum。2021 年。科学新闻事业发展。《科学》372,6540(2021 年 4 月)。https://doi.org/10.1126/science.abj0434 [9] Joshua A. Braun 和 Jessica L. Eklund。2019 年。假新闻,真钱:广告技术平台、利润驱动的骗局和新闻业务。《数字新闻》7,1(2019 年 1 月),1-21。https://doi.org/10.1080/21670811.2018.1556314 [10] J Scott Brennen、Philip N Howard 和 Rasmus Kleis Nielsen。 2018. 行业主导的辩论:英国媒体如何报道人工智能。(2018 年)。[11] Michael Brüggemann、Ines Lörcher 和 Stefanie Walter。2020. 后常态科学传播:探索科学与新闻业模糊的界限。科学传播杂志 19, 3 (2020 年 6 月)。https://doi.org/10.22323/2.19030202 [12] Madalina Busuioc。2021. 负责任的人工智能:让算法承担责任。公共管理评论 81, 5 (2021)。https://doi.org/10.1111/puar.13293 [13] Tania Cerquitelli、Daniele Quercia 和 Frank Pasquale(编辑)。2017. 大数据和小数据的透明数据挖掘。大数据研究,第 1 卷。 32. Springer International Publishing,Cham。https://doi.org/10.1007/978-3-319-54024-5 [14] Mark Deuze 和 Charlie Beckett。2022 年。想象力、算法和新闻:培养新闻业的人工智能素养。数字新闻 10,10(2022 年 11 月),1913-1918 年。https://doi.org/10.1080/21670811.2022.2119152 [15] Nicholas Diakopoulos。2015 年。算法问责制。数字新闻 3,3(2015 年 5 月)。https://doi.org/10.1080/21670811.2014.976411 [16] Nicholas Diakopoulos,Daniel Trielli 和 Grace Lee。2021 年。通过半自动化新闻发现工具理解和支持新闻实践。ACM 人机交互论文集 5,CSCW2(2021 年 10 月),1-30。https://doi.org/10.1145/3479550 [17] Wolfgang Donsbach。2012 年。记者的角色认知。《国际传播百科全书》,Wolfgang Donsbach(编辑)。John Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。摘自《劳特利奇公共科学技术传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7(2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),第 12 页。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-modelsJohn Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。载于《劳特利奇科学技术公共传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7 (2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2 (1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18, 12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10,10(2022 年 11 月),1731–1755 年。https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-modelsJohn Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。载于《劳特利奇科学技术公共传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7 (2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2 (1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18, 12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10,10 (2022 年 11 月),1731–1755 年。https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2(2002 年),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值观(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2(2002 年),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值观(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models
人工智能:«实验哲学»还是现实的要求?Oleh Romanchuk 1,Viktoriya Romanchuk 2 * 1伊万·弗兰科国立洛杉矶国立大学助理教授,利维夫,乌克兰2博士学位学生,伊万·弗兰科国立利维夫大学,乌克兰LVIV,乌克兰 *通信作者电子邮件id:vsesvit.journal@gmail@gmail.com export the export of power of power of power of power of power of power of pore exist of pore exist of pore exist of World of World of World of World。讨论“新社会秩序”的形成,计算机文明的哲学,影响人类生活的最新信息和通信技术的方法,全球化世界总计算机化的心理和社会经济的后果,最新的方式和含义是解决出现的许多问题。人类面临的关键挑战已经超过了智人解决这些问题的智力能力。迫切需要创建高性能的通用计算机,该计算机可以在人类智能的层面上推理和执行操作,甚至超过它,包括批判性思维和创造力。这是关于创建所谓的“人工智能”(AI)。然而,这一发明将来可能会成为对人类文明危险的根源,因为如果不作为社会存在,人工智能将在人类伦理,道德,心理学之外发挥作用。担心世界对人工智能的迷恋的原因是非常真实的。没有人可以预测超级智能融入社会的后果。文章分析了创建AI和可能出现的社会风险的问题。(LEM,2014年)。该研究的目的是由于需要对“人工智能”概念的本质进行更深入的了解,以及在大众传播和社会关系领域可以解决的那些任务的识别。关键字:信息,人工智能,人类,交流,信息社会,互联网资源,计算机,通信技术。简介计算机越来越多地技术密集型。如今,媒体上有关人工智能的科学和流行科学文章不再令人惊讶,描述了对AI对媒体,政治和经济学影响的研究,分析了人工智能和传统武器的共生可能后果,以及更多。许多原始作品致力于此问题:( Wiener,1948年),(Turing,1950),(Andrew,1985),(Luger,2008),(Russel&Norvig,2006)等。在1948年,诺伯特·维纳(Norbert Wiener)将注意力集中在材料系统的属性中,以复制,存储和使用另一个系统的结构,同时确保系统适应环境(Wiener,1948)。在1950年,艾伦·图灵(Alan M. Turing)发表了上个世纪表达的最原始,最深刻的思想之一 - «计算机和智能»(图灵,1950年)。作者描述了程序(«模仿游戏»),通过该过程可以确定机器在合理意义上与人相等的时刻。此“图灵测试”成为“机器智能”的标准理论测试。测试任务假定对话者的情报水平决定了他进行对话的能力。二十年后,著名的波兰科幻作家,哲学家和未来学家Stanislaw Lem在他的文章“ Golem xiv”中指出,两个思想共存的问题 - 人类和“不人道”,生物学和人工智能,生物学和人工智能是未来的主要问题之一(Lem,1973)。在基本的哲学工作中«summa Technologiae»Stanislav Lem预测了虚拟现实的创造,人工智能,发展了人类自动进化的思想等。作者认为由于人工智学与人之间的关系,可能会出现的三种替代方法:AI永远不会超越人类的思想;如果发生这种情况,该人将能够保持对AI的控制;一个人是
Epoka 大学 • Orbeli 生理学研究所 • 埃里温物理研究所 • AIT 奥地利理工学院有限公司 • ams AG • Argelas - 奥地利激光协会 • 奥地利科学院,IQOQI • 奥地利理工学院 • 克恩顿州应用技术大学 • 克恩顿州技术研究股份公司 • Crystalline Mirror Solutions GmbH • CTR 克恩顿州技术研究股份公司 • FEMTOLASERS Produktions GmbH • FFG 奥地利研究促进机构 • FH 福拉尔贝格州 - 应用技术大学 • 量子光学和量子信息研究所 • 莱奥本大学物理研究所 • 表面技术和光子学研究所,Joanneum Research Forschungsges。 mbH • IQOQI • isiQiri 接口技术有限公司 • JK 林茨大学 • Joanneum Research / NMP • kdg OPTICOMP • Kompetenzzentrum Licht GmbH • Leexedis Lighting GmbH • Luger Research eU • LUMITECH 奥地利 • Planlicht • QUBITON Laboratories KG • RECENDT – 无损检测研究中心有限公司 • 奥地利科学院 Stefan Meyer 研究所 • 施华洛世奇能源 •维也纳工业大学,光子学研究所 • 维也纳工业大学 • UAR GmbH • 因斯布鲁克大学 • 格拉茨大学 • 因斯布鲁克大学 • 维也纳大学 • 维也纳科技大学原子研究所,VCQ • 奥托贝尔照明 • ACQI sprl • ADB 机场解决方案 • AGC Glass Europe • 液化空气集团 • AMOS SA • Antwerp Space nv。 • ATA-VISION • Barco • Belgacom • 布鲁塞尔光子学团队 • Caeleste • 鲁汶天主教大学 • CELMA • 列日空间中心 • CLUSTER PHOTONIQUE • CNRS • COLASSE SA • CommScope • 赛普拉斯半导体公司 • 戴姆勒克莱斯勒 • DLR • 道康宁 • ELAS NV • ETAP nv • 欧盟军事参谋部 • EUCAR • 欧洲委员会 • 欧洲议会 • EuroTex • Flip Bamelis Engineering • 根特大学 • 根特大学 • 滨松光子学 • 亥姆霍兹联合会 • 高等光学技术研究所 • ICOS VISION SYSTEMS NV • II-VI Belgium NV • Imago 集团(前身为 AIMS Optronics) • imec • IWT • KULeuven • 鲁汶天主教大学 • KoWi • 鲁汶天主教大学 • LASEA • Light & • Multitel • MULTITEL • netec • Nikon Metrology Europe NV • Pirelli C. SpA • PNO Consultants • Robert Bosch GmbH • ROVI-TECH SA • Schréder • SEII asbl • SIRRIS • SOLVAY • 德州仪器 • TI • TMC • TP Vision • UGent / IMEC • 鲁汶天主教大学 • 列日大学 • 布鲁塞尔自由大学 (ULB) • 根特大学 • 鲁汶大学 • 布鲁塞尔大学列日• 蒙斯大学• 法雷奥视觉比利时• VDMA• 维托• 布鲁塞尔自由大学• VUB B-PHOT• VUB 应用物理和光子学系• XenICs• BH 电信• 保加利亚科学院• 电子研究所-BAS• Rompetrol• 图形艺术学院• 克罗地亚萨格勒布物理研究所• 罗德博斯科维奇研究所• 塞浦路斯理工大学• SAFE智能适应性表面有限公司 • 大学塞浦路斯 • 布尔诺理工大学 • CESNET zspo • CTU 布拉格,FEL • 布拉格捷克技术大学 • 布拉格化学技术研究所玻璃和陶瓷系 • HiLASE • 光子学和电子学研究所 • 南波西米亚大学物理生物研究所 • 科学院物理研究所 • Meopta-optika as • Nanomedic,as • 奥洛穆茨帕拉茨基大学 • 西波西米亚大学 - NTC • 皮尔森西波西米亚大学 - 新技术研究中心 • 奥尔堡大学 • 奥胡斯大学 • 基础与应用研究,大学 • Crystal Fibre A/S • DELTA Light & Optics Div. • DTU Fotonik • Ibsen Photonics • InvestroNet-Gate2growth • IPU • MaxInno • 哥本哈根大学尼尔斯玻尔研究所 • NKT Photonics • OFS Fitel Denmark Aps • 光学滤波器 • Risø 国家实验室,OPL-128 • RUNETECH • 安全和保护 • TTO A/S • 哥本哈根大学尼尔斯玻尔研究所 • 南丹麦大学 • RFMD (UK) Ltd. • 曼彻斯特大学 • EUPROCOM Ltd • Interspectrum OU • Laser Diagnostic Instruments AS • LDI Innovation UÖ • 阿尔托大学 • Ajat Oy Ltd • Arctic Photonics • BioMediTech • 拉彭兰塔理工大学 • Liekki Corporation • Liekki Oy • Lumichip Oy • 芬兰毫米波实验室 MilliLab • MODULIGHT Inc. • 坦佩雷理工大学光电子研究中心 • Optogear Oy • Pixpolar • 坦佩雷理工大学 • UEF • 东芬兰大学 • 约恩苏大学 • 于韦斯屈莱大学 • 奥卢大学 • VTT • 3M France • 3Sphotonics / Laboratoire IMS • ACAL BFI France • adixen Vacuum Products • AGENCE REGIONALE DE L'INNOVATION ALSACE • 艾克斯马赛大学 • 阿尔卡特 • Alpao • ALPhA – Route des Lasers Cluster 负责人 • ALPhANOV • Amplitude Systèmes • ARJOWIGGINS • 欧洲协会 • BBright • 生物梅里埃 • 波尔多大学 • Bureau d'études parrein • 法国商业中心 • CAILabs SAS • CCInt • CEA • CEDRAT TECHNOLOGIES • CELIA – UMR 5107 CNRS、CEA、波尔多大学 • 国家科学研究中心 • 中心造纸技术 • CILAS • CILAS • CIMTECH • CLUB LASER ET PROCEDES • 法国光子学联合会 法国光子学联盟 • 国家光学与光子委员会 • 竞争力集群 OPTITEC • 康宁 CETC • Cristal Laser • DGCIS • DIAFIR • DOW Chemical • Draka Comteq • e2v • 马赛中央学院 • 里昂高等师范学院 • 综合理工学院 • EGIDE • Emc3 • ENIB • ENS Cachan • Enssat • EPIC – 欧洲光子产业联盟 • esiee paris • ESSILOR • ESYCOM-ESIEE • 欧洲光子产业联盟 • EURO-PROCESS • EUROSHAKTIWARE • EVOSENS • EXELSIUS • FEMTO-ST/CNRS • FLIR ATS • 重点发展联盟 (FSDA) Ltd.• Fogale Nanotech • 法国电信 • 法国原子能委员会 (CEA) • 法德圣路易斯研究所 • GLOphotonics SAS • 格勒诺布尔-伊泽尔 - AEPI • HOLO3 • HOLOTETRIX • horiba jobin yvon • HP • ICB UMR CNRS 5209 • IDIL 光纤 • IES - 蒙彼利埃大学 CNRS • IFREMER • IFTH • III-V 实验室 • IM2NP - 保罗塞尚大学艾克斯 - 马赛 • Imagine Optic • IMEP LAHC • Infiniscale • INRIA • 斯特拉斯堡 INSA • INSA LYON • 菲涅尔研究所 • 光学研究所 / CNRS • 焊接研究所 • 菲涅尔研究所 CNRS • MAUPERTUIS 研究所 • 梅里厄研究所 • 矿业电信研究所 • 雷恩第一大学化学科学研究所 - CNRS • IREIS • IREPA LASER • IREPA LASER / Rhenaphotonics Alsace 集群 • ISORG • IVEA • iXCore • JCP CONSULT FRANCE • KLOE – OPTITEC • Kastler Brossel 实验室、CNRS、ENS、UPMC • LP3 实验室 UMR 6182 CNRS • 光学材料、光子学和系统实验室 • Laser 2000 • Linkwest • Lorang Innovation • LPICM – 巴黎综合理工学院 • LPMC、尼斯索菲亚安提波利斯大学 • LPN CNRS • LSP-ENSPS-ULP / Rhenaphotonics Alsace • Lumilog • 制造