图1:我们发现我们发现在重定向步行(RDW)期间发现与场景运动相关的生理信号的特性的可视化和生理信号的特性。(a)我们进行了心理物理实验,其中参与者完成了数百个试验的旋转任务,在旋转过程中,将不同量的额外场景运动注入虚拟环境中。参与者报告了他们是否认为额外的注射动作,我们计算了他们对这些动作的视觉敏感性。(b)我们的分析表明,随着注射动作的速度提高,参与者的凝视(左)和姿势(右)的稳定性下降。这些结果首次表明了重定向强度(注入视觉运动增长)和生理信号之间的直接相关性。
归因于脑电图(EEG)信号的信噪比差(SNR)[3]。可以通过增加信号水平和/或降低噪声水平来改善SSVEP信号的SNR。研究人员在改善SSVEP的SNR并提高BCI性能方面取得了长足的进步。首先,研究人员通过应用高级信号处理方法改善了SNR。例如,在当前的BCI系统中广泛使用试验平均,以改善脑电图分析中的SNR [3]。空间过滤已用于将多通道脑电图数据投射到低维空间空间中,以消除任务 - 无关的组件并改善与任务相关的EEG信号的SNR [4]。对于SSVEP,规范相关分析(CCA)方法可以最大程度地提高SSVEP的检测频率[5,6]。独立的组件分析是另一种空间滤波方法,通过将与任务相关的脑电图组件与任务 - iRrelevant eeg和人为成分分开,从而增强了脑电图信号的SNR [7,8]。第二,研究人员设计了实验以获得增强的与任务相关的脑电图信号并改善SNR。例如,在有效的基于SSVEP的BCI中,与使用Checkerboard刺激获得的刺激相比,使用情感人脸的视觉刺激大大提高了SSVEP信号的振幅[9]。第三,一些研究人员调整了视觉刺激亮度的参数,以调节SSVEP响应的幅度,从而改善了SSVEP的SNR [10-12]。例如,相关研究表明,亮度对比信息对于形式,运动和深度的感知至关重要[13,14]。亮度对比或“调制深度”定义为最大亮度的比率减去最小亮度与最大亮度以及
抽象实现具有窄带发射和高颜色纯度的高发光有机发光设备(OLEDS)在各种光电领域都很重要。激光显示由于其最终的视觉体验而在下一代展示技术中表现出了出色的优势,但这仍然是一个巨大的挑战。在这里,我们开发了一种新型的基于OLED的有机单晶。通过将有机激子状态与光学微腔内强烈耦合,我们从极性的OLED(OPLEDS)中获得了Polariton电致工(EL)发射,具有较高的亮度,窄带发射,高色纯度,高极性,高极性以及出色的光学泵送极性元素Laser。此外,我们通过理论分析评估了电泵浦极性激光的潜力,并提供了可能的解决方案。这项工作提供了一种强大的策略,具有材料 - 设备组合,为电动有机单晶的极性发光设备和可能的激光器铺平了道路。
尊敬的编辑和工作人员,请查阅附件中的手稿,标题为“通过机器学习预测 Micro-LED 显示器的亮度衰减,以了解温度分布和 LED 退化情况”。该论文已提交给 2023 年 ISPS 会议的《微系统技术杂志》特刊发表。它既没有发表,也没有提交给其他期刊。非常感谢您的时间和帮助。我们非常期待听到
摘要:传统的反射特性可调的反射式光学表面需要复杂的外部电源,电源系统结构和制备工艺复杂,导致反射特性的调制有限,难以大规模应用。受生物复眼的启发,利用不同的微结构来调制光学性能。凸非球面微镜阵列(MMA)可以在扩大视场角的同时提高亮度增益,亮度增益广角>90°,视场广角接近180°,具有大增益广角和大视场广角的反射特性。凹非球面微镜阵列可以使亮度增益增加较大量,最高可达2.66,具有高增益的反射特性。并进行了工业级生产和在投影显示领域实际应用。结果证实,凸面MMA能够在宽光谱和宽角度范围内实现亮度增益,而凹面MMA能够显著提高亮度增益,这可能为开发先进的反射光学表面提供新的机遇。
本试验评估协议(“协议”)介于:(i)Luminance Technologies Ltd,这是一家在英格兰和威尔士注册的私人有限公司,其商业注册号为09857705及其在九山路的注册地址,Cambridge,Cambridge,CB2 1GE(CB2 1GE(Luminance”)和(ii)的授权或(ii)是该产品的使用者和(ii),或者是该产品的使用者,或者是该产品的使用者,是该产品的使用者,该产品是该产品的使用者。 (“客户”或“您”)。这些条款和条件构成了您与亮度之间具有法律约束力的一致性。通过勾选下面的框,您接受了这些条款和条件,并且您承认您已经阅读并理解了这一协议,并且您同意(您自己代表您代表实体或其他组织代表该实体或组织,以及该实体或组织中的任何其他个人以及使用发货范围或条件在以下日期(以下日期)'''
光导板(LGP)是一个不可或缺的组件,可帮助从各种应用中从光源中分发照明。因此,LGP中微观结构模式的设计和质量在实现高发光效率和光均匀性方面起着重要作用。这项研究调查了使用CO 2直接激光结构在PMMA上使用CO 2直接激光结构,激光功率与激光扫描速度与微点形成之间的关系。此外,还使用亮度计评估了不同微点音高对亮度的影响。我们的发现表明激光功率的增加和激光扫描速度的降低导致较大的微点直径和更深的微点。结果还表明,音高越小,亮度读数越高。总体而言,研究中证明的低成本CO 2直接激光结构能够产生一致的微点模式直径和高度,这适用于质量产生中LGP的制造。
简介现在,许多采用不同技术制造的高动态范围 (HDR) 和宽色域 (WCG) 显示器都已在市场上销售。 HDR10、杜比视界和混合对数伽马 (HLG) [1-2] 等新高清视频标准均将 ITU-R BT.2020 作为默认色域。 此外,HDR 不仅需要广泛的色域,还需要比标准动态范围 (SDR) 高得多的亮度动态范围。 例如,HDR10 [2] 的最大白色亮度为 1000cd/m2,而杜比视界 [3] 的最大白色亮度高达 10000cd/m2。 色域始终是一种与亮度范围无关的限制性属性。 相反,色彩体积同时涉及色域和亮度范围,并且似乎是比较应该具有大色域和扩展亮度范围的显示器的更好的描述符。 我们已经提出使用色彩体积来分析显示器的视角色彩测量 [4-6]。在这些研究中,使用了标准 L*a*b* CIE 1976 和 L*u*v* 色彩空间,并计算了不同显示器的色彩体积的几个参数。国际显示器计量委员会也对该方法进行了标准化 [7]。在本文中,我们使用杜比实验室最近提出的 ICtCp 色彩空间,该空间非常适合 HDR 和 WCG 内容 [8]。我们将这个新色彩空间与标准 L*a*b* CIE 1976 色彩空间 [9] 进行了比较,分析了在两个 HDR 显示器上测得的色彩视角属性:一台 QLED 电视和一台 OLED 电视。使用最大角度孔径为 ±80° 的 EZContrast 傅里叶光学视角系统在白色、黑色、红色、绿色、蓝色、洋红色、黄色和青色状态下进行色彩测量。
©2019 Carl Zeiss Vision Inc. ZEISS Individual 是 Carl Zeiss AG 的注册商标。FaceAdapt 和 IndividualFit 是商标,i.Scription、FrameFit+、Luminance Design 和 Digital Inside 是 Carl Zeiss Vision GmbH 的注册商标。ZEISS Individual 产品采用 Carl Zeiss Vision 技术设计和制造。美国专利 6,089,713。i.Scription 产品采用 Carl Zeiss Vision 技术设计和制造。美国专利 7,744,217。其他专利正在申请中。*文件数据 - 请参阅“ZEISS SmartLife 源文档”部件号:0000139.40393。0000139.40391,修订版 10/19