摘要 我们研究了百叶窗(一种常见但光学复杂的开窗系统)如何导致日光照明控制系统的性能不可靠。利用一个全仪表化的全尺寸试验台设施,我们监测了一年中私人办公室中改进的闭环比例光电控制系统的日光照明性能。日光与光电传感器信号的工作平面照度之比以太阳条件和百叶窗角度为特征。该比率的变化会导致实际照度水平周期性不足。安装人员可以使用这种类型的特性来确定在调试期间进行的初始控制调整是否会在大多数日光条件下带来可靠的性能。根据我们对这一具体案例研究的观察,我们谨慎地给出了调试指南。我们量化了该比率变化对控制性能的影响。使用中等增益常数,在一年中的 91% 时间内,监测到的工作平面照度水平不会低于设计设定值的 90%。当出现差异时,日光相关性和测量条件之间的差异是工作平面照度不足的主要原因。此性能不适用于市售的闭环比例系统,因为 1) 典型系统很少在安装时正确调试
生成人工智能 (Gen AI) 的使用开始 1. 本实践指南于 2024 年 11 月 21 日发布,于 2025 年 2 月 3 日开始生效,并将适用于该日期起的所有程序。 简介 2. 生成人工智能 (Gen AI) 是一种人工智能,它能够基于从大量训练材料中获取的模式和数据创建新内容,包括文本、图像或声音。该训练材料可能包括通过“抓取”公开和私人可用的文本源以生成大型语言模型而获得的信息。 3. Gen AI 可以采用通用大型语言模型程序的形式,例如 Chat-GPT、Claude、Grok、Llama、Google Bard、Co-Pilot、AI Media 或 Read AI,或更多专门针对律师的定制程序,例如 Lexis Advance AI、ChatGPT for Law、Westlaw Precision、AI Lawyer、Luminance 和 CoCounsel Core。这些示例并非详尽无遗。此类程序可能会使用“聊天机器人”,并向此类程序的用户提出提示请求和细化请求。
• 光学模块位于传感器上方,以确保在设定温度(23 °C +/- 2 °C)下获得所需的焦点,并保证场景中的分辨率规格; • 在偏航、滚动和俯仰时,光学模块相对于光轴定位,以获得图像边缘的均匀分辨率; • 传感器与光学模块轴对齐,以获得图像中心的最佳性能; • 光学中心最终与传感器中心对齐(+/- 20 像素或 22 微米)。 为了保证 ISP 的图像质量规格,工厂会执行图像校准。 在其内部存储器中,每个光学单元都带有光学中心、坏点映射、镜头阴影映射(亮度和颜色)和白平衡。 图 3 – 主动对准相机组件
视频解码器最基本的工作是从视频复合信号的黑白信息中分离出颜色。自 50 多年前彩色电视问世以来,已经通过多种方式实现了这一任务。多年来,人们使用了许多不同的分离方法。随着新的经济高效技术的出现,消费者已经看到图像质量和细节的逐步改善。显示管技术和半导体工艺的进步推动了技术的发展,提供了更清晰、更强大的视频。但是,由于信号在频谱中相互重叠,因此将色度信息与亮度信息分离尤其具有挑战性。如何分离它们,同时最大限度地减少显示伪影?
虽然基于事件的空间态势感知提供了显著的优势,但基于事件的传感范式也带来了传统基于帧的 SSA 所没有的新挑战。快速而微弱的点源很难在其他来源产生的虚假变化检测中识别出来,尤其是来自昆虫、蝙蝠和飞机的检测。神经形态传感器缺乏绝对亮度信息,当 RSO 和大气物体的轨迹从观察者的角度来看相似时,更难区分它们。虚假检测不仅限于大气伪影,也可能是由于传感器噪声造成的。虽然最近的神经形态传感器与旧型号相比已显著改善了噪声特性,但仍然希望尽可能接近本底噪声来检测越来越微弱的物体。
1 真正的 8K 分辨率定义为具有 7,680 x 4,320 像素。原生 8K 内容基于当前的 8K 流媒体、连接和解码标准。未来和某些方的标准不保证或可能需要购买额外的设备/适配器。2 观看体验可能因内容类型和格式而异。3 升级到 8K 分辨率。结果图像可能因源内容而异。升级可能不适用于 PC 等其他外部连接。4 在电影模式下测量 100% 色彩体积,经 VDE 认证。5 Quantum HDR 亮度范围基于内部测试标准,并可能根据观看条件或规格而发生变化。6 DICOM®(医学数字成像和通信)是医学图像和相关信息的国际标准。DICOM 模拟模式仅用于非诊断、参考目的。
• 2K/HD/SD I/O up to 50/60p • 4x bidirectional 3G-SDI BNC with 16-ch embedded audio • HDMI I/O with 8-ch embedded audio • Two Thunderbolt 3 ports with loop through • Multi-channel workflow support for OBS/Wirecast/vMix and other applications • RGB 4:4:4 12-bit up to p30, YCBCR 4:2:2 10位和HFR工作流程支持•通过SDI•PQ,HLG,HDR10和Dolby Vision支持的SDR/HDR传输特征,色彩学和亮度的VPID信号传导•HDR元数据捕获和自动播放•通过HDMIIOR ONDER•进行射击•8-8-8-8-面板音频显示•包括对Apple硅的支持•RS-422 VTR控制,参考,LTC输入和LTC输出t-Tap Pro $ 1,099紧凑型,无声,带有SDI和HDMI的移动4K HDR
摘要 CIE 1976 L*a*b* 色彩空间 (CIELAB) 已广泛且成功地应用于各种应用,包括数字彩色成像、彩色图像质量和色彩管理。它的一个缺点是缺乏色调线性,这是色域映射中的一个关键问题,而 IPT 色彩空间已解决了这一问题,该领域对此进行了广泛应用。这两个空间的一个限制是它们不适用于高动态范围 (HDR) 成像中的颜色问题。这是因为它们在零亮度/亮度处的截距很难确定,并且它们对于比漫反射白色更亮的颜色的适用性不确定。为了解决这些 HDR 问题,提出了两个新制定的色彩空间以供进一步测试和改进,hdr-CIELAB 和 hdr- IPT。它们只是基于用更符合生理学的双曲函数(称为 Michaelis-Menten 方程)替换 CIELAB 和 IPT 中的幂函数非线性,该方程经过优化,可以最接近地模拟漫反射色域的原始色彩空间。本文描述了这些提出的模型的公式,并使用 Munsell 数据与 CIELAB、IPT 和 CIECAM02 进行了比较,进行了一些初步评估。
近年来,基于热激活延迟荧光 (TADF) 发射器的高效有机发光二极管 (OLED) 已经实现,但器件寿命需要进一步提高才能用于实际显示或照明应用。在这项工作中,通过调节单层未掺杂器件的光学腔,提出了一种器件设计原理,以实现高效、长寿命的 TADF OLED。通过增加发射层厚度将腔长延长至二阶干涉最大值可拓宽复合区,同时光学输出耦合效率仍然接近较薄的一阶器件。此类器件设计可得到高效稳定的单层非掺杂 OLED,其最大外量子效率为 16%,LT 90 为 452 小时,初始亮度为 1000 cd m − 2 时 LT 50 为 3693 小时,是一阶 OLED 的两倍。进一步证明,OLED 寿命和光强度之间广泛使用的经验关系源自三线态极化子湮没,从而推算出 100 cd m − 2 时的 LT 50 接近 90 000 小时,接近实际背光应用的需求。
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。