可见频谱中能够动态持续发光(PERS)的抽象材料在显示,生物传感和信息安全性的应用中受到了极大的追捧。然而,很少实现具有可检测和激发波长依赖性特征的SERL材料。在此,存在一个非杂色化合物CAGA X O 4:BI(x <2),显示超长的色彩可调式SERL。可以通过改变激发波长来调整持续的发射波长,从而使可见光谱内的绿色到橙色区域的动态色彩调制。理论计算与实验观测相结合,用于阐明各种缺陷状态的热力学电荷跃迁,从而提供了对BI 3 + Emitters,陷阱和多色PERS之间关系的见解。此外,还展示了可颜色可调的SERL材料和富裕设备的实用性,以在视觉感知看不见的紫外线光,多色显示,信息加密和反爆炸。这些发现创造了新的机会,可以为各种应用开发具有动态控制的SERL的智能光电材料。
重金属污染是由于它对环境和人类健康的有害影响而引起关注的主要原因。除了严重的生态后果外,对金属污染物水平过高的暴露还会导致发展异常,神经系统疾病,最终导致癌症。1 - 3因此,对有效监测方法的需求日益增长,可以实时高度敏感,快速检测重金属离子。迄今为止,已经开发了广泛的分析技术,以促进样品中重金属的确定和定量,包括原子吸收光谱,敏感性等离子体质谱,伏安级质谱法,伏安级方法,表面等离子体的共振,拉曼光谱,拉曼光谱和激光分类光谱。4 - 8然而,这些技术需要专门的设备,复杂且耗时的样品制备,或者无法满足令人满意的灵敏度和检测限。9
发光安全标签是保护消费品免遭假冒的有效平台。尽管如此,由于标签元件的窄带光致发光特性,这种安全技术的寿命有限。在本文中,我们提出了一个新概念,用于应用通过直接飞秒激光写入制造的混合金属半导体结构中实现的非线性白光发光来创建物理上不可克隆的安全标签。我们证明了在制造阶段控制的制造混合结构的内部组成与其非线性光信号之间的密切联系。我们表明,应用基于离散余弦变换的去相关程序以及标签编码的极性码可以克服白光光致发光光谱相关性的问题。应用的制造方法和编码策略用于创建物理上不可克隆的标签,具有高度的设备唯一性(高达 99%)和位均匀性(接近 0.5)。证明的结果消除了利用白光发光纳米物体创建物理不可克隆标签的障碍。
3D打印构成了技术的进步,通过使制造商能够从数字蓝图制造复杂的定制组件来彻底改变当代工业。此外,3D打印与尖端材料的融合导致了具有多种应用范围的诱人元素。因此,这项工作描述了与Yb 3 +和ER 3 +掺杂的发光材料Nayf 4的合并,并嵌入树脂中以进行3D打印以创建电动发光齿轮。制造的发光齿轮利用了525 nm(2 H 11/2→4 I 15/2)和550 nm(4 s 3/2→4 I 15/2)的ER 3 +排放之间的强度比,这些强度比热耦合,以检测齿轮通过Friction的较小温度变化。该技术可以与热电视互补,证明对于监测使用热摄像机测量或直接接触温度计的元素中的温度特别有价值。发现光学测量值与热电视相比,温度读数具有增强的(统计)精度,发光温度计为𝜹 t = 0.07 k,而热摄像机则与𝜹 t = 0.3 k相比。这项工作可以使用具有令人兴奋的特性的3D打印和材料来激发新的研究方向,从而促进当代工业技术中的创新解决方案。
在此报告,报告了从三肽到Achiral网络超分子有机框架(SOF)的手性转移,基于构造式踩踏置构,它不仅显示了高度选择性的可逆性刺耳性转移(还显示出近来的nir nir nir cornir cornir cornir cornir cornir cornir cornir nir nir nir nir nir,Taking advantage of macrocyclic confinement, CB[8] separately encapsulated two kinds of tetracationic bis(phenothiazines) derivatives (G1, G2) at 2:1 stoichiometric to form organic 2D SOFs, efficiently enhancing 12.6 fold NIR luminescence and blueshifted from 705 to 680 nm for G1, and redshifted G2分别为695至710 nm。毫不偶然地,三种肽与两种非毒剂非共价框架(G1/CB [8]或G2/CB [8])表现出不同的圆二色性信号,其基于不同的结合模式和效果的奇异式旋转模式,并取得了良好的chirition contrirect and y ryflative contrirative trapprAMECTRAMEC,在G2/CB的量度最多46.2倍,量子产率(QY)从0.71%增加到10.29%[8],显示可逆性的手性转移和在热刺激下可调的NIR荧光。因此,当前的研究已实现了从三肽到SOF的可控手性转移,并增强了可调的NIR荧光的能力,后者成功地应用于热反应性手性手性逻辑门,信息加密和细胞成像中。
根据国际能源署 (IEA) 和欧洲环境署 (EEA) 的数据,能源消耗量逐年增加。这刺激了人们对新能源的探索和现有能源效率的提高。据预测,到 2030 年,光伏设备将产生太瓦级能源,同时千瓦时成本也将降低 [1]。太阳能是最经济实惠的能源之一。硅基太阳能电池主要用于太阳能利用。大部分能源将由硅太阳能电池板产生。除了硅之外,还有各种多层复合材料,如 GaAs、CdTe、Cu(In,Ga)Se 2 和最近提出的钙钛矿结构 [2, 3]。后者价格昂贵,难以在工业规模上生产。此外,由于有毒成分,过期后处理也存在问题,使用此类复合材料违背了绿色化学的原则。硅的优势在于化学可用性、技术链的成熟度、电子元件(包括含有稀土元素的元件)的处理。同时,硅基太阳能电池的一个严重缺点是光电转换效率 (LECE) 相对较低,即最佳样品的转换效率不高于 25% [4,5]。硅的最高光敏性区域位于约 1 µ m,其 LECE 光谱与太阳发射光谱的对应性较差。通过将太阳辐射从紫外线和蓝色光谱范围向下转换为 1 µ m 光谱范围来提高硅太阳能电池板的效率是一项紧迫的任务,对于太空应用而言,这非常现实 [6– 9]。潜在的发射体是三价镱离子,因为它的近红外 (NIR) 发光带约为 1000 nm( 2 F 5 / 2 – 2 F 7 / 2 跃迁)[9–13],与硅电池的 LECE 光谱顶部高度重合。Ba 4 Y 3 F 17 [14–17] 是经过深入研究的新型发光基质之一,因为它表现出下转换发光的高量子产率 [14]。对于在这些光谱区域吸收的各种敏化阳离子,能量可以从紫外和蓝色光谱区域转移到镱。一种特别有效的能量转移机制是通过敏化剂离子的逐步弛豫,通过量子切割机制激发两个受体离子 [12, 13, 18, 19]。量子切割表现出高达 195% 的高量子效率系数,但 NIR 发光的量子产率较低。更有效的途径是在具有更高发光量子产率的系统中简单地降档。一种有前途的组合物是 Yb/Eu 掺杂对,因为铕的吸收光谱包含 UV 和蓝色光谱区域的几条线。镱发光的最高直接测量量子产率(2.对于 SrF 2 :Yb (1.0 mol %):Eu (0.05 mol %) 粉末,在 266 nm 泵浦下达到 5 % [20]。本文旨在合成 Ba 4 Y 3 F 17 :Yb:Eu 固溶体并研究其发光性能。该样品旨在用于增强硅太阳能电池的 LECE。
以下出版物 Liu, X., Wei, X., Miao, Y., Tao, P., Wang, H., & Xu, B. (2021). Tribenzoamine-based smallmolecules with gathering-induced emission and mechanochromic luminescence properties for OLED application. Tetrahedron, 86, 132061 可在 https://doi.org/10.1016/j.tet.2021.132061 上找到。
Kinetic of the Power-Dependent Up- Conversion Luminescence in ER 3+ /YB 3+-Doped Single Nanocrystal M. Żebrowski, M. Ćwierzona, M. Nyk, A. Bednarkiewicz, S. Mackowski, D. Piątkowski 11:00-11:45 11:45 Applications II Session Chair: Łukasz Marciniak
在这项研究中还研究了吸收和X(UV)射线激发发光特征。Yb 3+的电荷转移发光显示了最大值在345 nm和515nm处的双峰光谱,这拟合了所需的能量差约10000 cm“ 1” 1来自2 fs/2和2¥〜m yb的分离。激发光谱(em。= 350 nm)是圆形240 nm的峰值,这与观察到的吸收光谱是一致的。在360 nm处测得的80 K发光衰减显示了30 ns的主要衰减时间,而在室温下,由于发光猝灭,它缩短至0.8 ns。
scientific method - observation, detect, investigation, control of variables, models solutions - preparing solutions, dilution, use of pipet, measure chemical structures - atomic structure and electron levels chemical reactions - changes in properties of matter, catalyst, oxidation and oxidizers, chemistry of luminol energy and matter - light from chemical reactions, luminescence, quantum, photon, excited state, emission of light, kinetics (rates of反应)科学与历史 - 普朗克和爱因斯坦以及量子科学与环境 - 萤火虫和生物发光,科学和技术 - 法医安全版权版权所有©1994-2013,Science of Science,Inc。
