上下文。恒星磁盘截断(也称为星系边缘)是银河大小的关键指标,由气体密度阈值的恒星形成的径向位置确定。该阈值本质上标志着星系中发光物质的边界。准确测量数百万星系的星系大小对于理解在宇宙时间内推动星系演变的物理过程至关重要。目标。我们旨在探索段的任何模型(SAM)的潜力,即设计用于图像分割的基础模型,以自动识别星系图像中的磁盘截断。通过欧几里得广泛的调查,我们的目标是提供大量的数据集,我们的目标是评估SAM以完全自动化的方式测量星系大小的能力。方法。SAM被应用于1,047个磁盘样星系的标记数据集,其中M ∗> 10 10m⊙在红移至z〜1时,来自哈勃太空望远镜(HST)烛台。我们分别使用F160W(H -band),F125W(J -band)和F814W + F606W(I -Band + v -band)HST HST HST滤镜来创建复合RGB图像“欧盟化” HST Galaxy图像。使用这些处理的图像作为SAM的输入,我们在输入数据的不同配置下检索了每个星系图像的各种截断掩码。结果。我们发现了由SAM确定的星系大小与手动测量的星系大小之间的一致性(即,通过在星系光谱中使用恒星磁盘边缘的径向位置),平均偏差约为3%。当排除问题案例时,此错误将减少到约1%。结论。我们的结果突出了SAM以自动化方式在大型数据集上检测磁盘截断和测量星系尺寸的强大潜力。SAM表现良好,而无需大量图像预处理,标记为截断的训练数据集(仅用于验证),微调或其他特定于域特异性适应(例如传输学习)。
以重过渡贵金属有机配合物(如Ir(III)的联吡啶配合物)为代表的磷光材料,直到第三代TADF材料(如有机给体-p桥-受体分子)。在电激发下,TADF材料(以非常低的第一激发单重态-三重态能隙(DE ST)为特征的化合物)被热激活,以诱导有效的逆系间窜越(rISC),其中三重态激子转化为单重态激子,从而主要从发射的单重态激发态发光。图1示意性地示出了TADF材料的电致发光过程。与贵金属有机配合物磷光材料相比,TADF材料具有材料空间更大、价格低廉、易于制备和合成、易于制作柔性屏幕以及蓝光发射更稳定的优势。因此,近十年来,作为现代OLED最有前途的电致发光材料,它们得到了实验2,5 - 9 、理论10 - 23 和理论-实验相结合15,24,25的深入研究。基本上,有两类TADF材料得到了认真探索4。第一类是纯有机D - A或D - p - A体系,其电子给体(D)或受体(A)主要由含氮芳香杂环构成。最低激发态通常具有显著的分子内电荷转移(CT)跃迁特性。经过合理的设计和优化,基于此类TADF材料的OLED器件的外量子效率(EQE)甚至可以高达30%。从结构特征上看,由于给体和受体部分之间有足够的空间位阻,最好的发光效率通常对应于扭曲的D – A(或D – p – A)化合物。另一类是电子排布为d 10 的过渡金属(Cu(I)、Ag(I)、Zn(II)等)配合物,它们的最低激发态通常具有明显的金属 – 配体电荷转移(MLCT)跃迁特征。饱和的d 10
摘要 在混合溶剂(水-丁醇和水-环己醇)存在下,利用醋酸铜和硫脲研究了硫化铜(CuS)的结构、成分、电气和发光特性。硫化铜样品的 X 射线衍射 (XRD) 图案显示其六方结构,这是各种混合溶剂的结果。通过使用能量色散 X 射线 (EDX) 和傅里叶变换红外 (FT-IR) 检查,确定了键和原子量百分比。使用扫描电子显微镜 (SEM) 发现水-丁醇和水-环己醇中的硫化铜颗粒形态分别为棒状和片状。使用光带能量曲线和紫外-可见光吸收光谱确定了硫化铜纳米结构的带隙能量。硫空位缺陷是 PL 光谱中出现的紫外和可见光发射带的原因。根据 CV 研究,水-环己醇辅助的硫化铜样品的电化学特性优于水-丁醇辅助的硫化铜样品。根据催化剂的效率,计算了混合溶剂辅助的硫化铜样品中坎戈红 (CR) 染料降解的比例。引言与环境问题、危险废物和有毒水污染物相关的硫化铜受到了广泛关注。有机染料对纺织和其他行业的重要性也非常重要。与传统方法相比,催化方法具有多种优势,包括氧化速度更快和不产生多环产物。由于半导体材料吸收光,带隙能量等于或大于,这可能导致自由基氧化系统表面。但如今,硫化铜因其与能量存储和生物应用(包括抗菌和抗癌治疗)的联系而成为主要研究对象。硫族化合物纳米结构半导体,包括 ZnS、CdS、NiS、CoS 和 CuS,可用于气体传感器、LED、光伏电池、光催化和其他应用。CuS 纳米结构是硫族化合物之一,是 p 型半导体材料,由于其在环境温度下的带隙低至 2.2 eV,因此非常有利于光热、光电应用。这是由于光吸收过程中光子原子分子与光吸收之间的相互作用。具有各种形态的过渡金属氧化物作为光电材料的开发引起了人们的新兴趣,最近发现的一类具有有趣光物理特性的纳米材料的报道正在促进
上下文。蓝色超级巨人(BSG)是理解大型恒星演变的关键对象,在星系的演化中起着至关重要的作用。然而,理论预测与经验观察之间的差异已经打开了尚未回答的重要问题。研究这些物体具有统计学意义和公正的样本可以帮助改善情况。目标。我们对IACOB光谱数据库的大量银河发光蓝星(其中大多数是BSG)进行了均匀且全面的定量光谱分析,从而提供了重要的参数,以改进和改善理论进化模型。方法。我们使用IACOB-BROAD得出了投影的旋转速度(V SIN I)和大型膨出(V MAC),这与傅立叶变换和线条型拟合技术相结合。我们将高质量的光谱与使用F astwind代码计算的大规模恒星大气的最新模拟进行了比较。这种比较使我们得出有效温度(T e FF),表面重力(log g),微扰动(ξ),硅和氦气的表面丰度,并通过风能强度参数(log Q)评估恒星风的相关性。结果。,我们为迄今为止迄今为止的最大的银河发光O9样品提供了上述量的上述量的估计和相关的不确定性,该样品由光谱分析,包括527个目标。我们发现,在T eff≈21kk处的恒星相对数量明显下降,与低于该温度的快速旋转恒星的稀缺相吻合。我们推测此特征(大致相结合到B2光谱类型)可能大致描绘了在15至85 m⊙之间的质量范围内经验终端时代主序列的位置。通过研究O恒星和BSG的V SIN I分布的主要特征作为T E FF的函数,我们提出,将角动量从恒星芯到表面运输的有效机制可能沿高质量结构域中的主要序列运行。我们发现ξ,v MAC和光谱光度L(定义为T 4 E FF / g)之间的相关性。我们还发现,样品中不超过20%的恒星具有清晰的氦气,并表明该特定子样本的起源可能是二元进化。我们没有发现在风强度区域朝向较低的情况下,风强度增加的明确经验证据。
上下文。在亮度log l / l⊙⊙5.2的亮度log log-type恒星中显示弱的风,质量损失速率低于10-8 m⊙yr-1。这意味着,与他们更庞大,更发光的兄弟姐妹不同,它们的光电层不会受到恒星风的强烈影响。目标。一种混合非本地热力学平衡(非LTE)方法 - 在LTE假设下与非LTE线形成计算相结合的线主静水压模型大气 - 测试了晚期O-Type恒星的分析,其质量为量高达25 m 25 m。研究了20个大多数尖锐的O8型O8至O9.7型恒星的银河恒星,以及先前使用全非LTE模型大气的文献中研究的Luminosity类V和IV样品。方法。使用Kurucz的A TLAS 12代码计算的静液压和平行大气结构以及合成光谱以及非LTE线形成代码D ETAIL和S URFACE,这些代码an和S Urface(涉及了湍流压力对大气的影响)。高分辨率光谱的大气参数。通过考虑恒星进化轨道和Gaia早期数据版本3(EDR3)视差来得出基本恒星参数。星际红色的特征是从紫外线到MID-IR拟合光谱能量分布。结果。对于16个样本恒星的所有派生参数都可以实现高精度和精度(4个对象显示复合体格)。湍流压力效应对于定量分析而言很重要。有效温度确定为1–3%的不确定性水平,表面重力为0.05至0.10 dex,质量高于8%,半径高于10%,并且亮度通常超过20%的不确定性。丰度均具有0.05-0.10 DEX的不确定性,并且在0.03–0.05 DEX(1σ标准偏差)一般而言。总的来说,先前研究使用统一的光球加风(全)非LTE模型大气的结果,并具有更高的精度。对于元素丰度,这些改进最为明显,并且发现较小的微涡轮速度。在我们的光谱距离与盖亚(Gaia)之间达成了总体良好的一致性。GAIA EDR3基于LAC OB1B关联以及开放簇NGC 2244,IC 1805,NGC 457和IC 1396的距离被确定为副产品。派生的N/C与N/O的丰度比率紧密地遵循了恒星进化模型的预示。恒星上的两个显示出非常高的CNO加工材料的混合,并且似乎源于二元进化。
报告介绍了一项研究,其中使用预定的制造方法将轻木、白蜡木和桦木制成透明木材。透明木材有许多可能的应用,包括节能建筑、包装、太阳能电池和电子设备。这项研究的目的是比较获得的透明样品的形态和光学特性,并将这些结果与它们的微观结构联系起来。这样做是为了确定哪种木材最适合预定的制造方法。所选的制造方法包括三个步骤:脱木素、溶剂交换和聚合物渗透。该工艺的第一步,即脱木素,目的是去除木质素,木质素是木材中赋予木材颜色的成分。这是通过在酸性环境中用醋酸盐缓冲液和亚氯酸钠进行化学处理,同时诱导加热来实现的,木材样品由此变白。然后将样品放入真空干燥器中,脱木素化学品首先与乙醇交换,然后与丙酮交换。乙醇可防止纤维收缩,丙酮可去除木材结构中的最后化学残留物。在最后一步聚合物渗透之前,甲基丙烯酸甲酯单体聚合成低聚物。然后在真空条件下将它们渗透到木材样品中,在那里它们聚合成聚甲基丙烯酸甲酯 (PMMA)。PMMA 具有与木材相似的折射率,这减少了光散射并增加了样品的透明度。然后将木材样品包装在两块玻璃板之间,用铝箔包裹,并在烤箱中加热以完成聚合。此后,获得透明的木材片。对木材样品的光学特性和形态进行了表征。为了确定光学特性,测量了透射率和雾度。透射率表示有多少光可以穿过样品,而雾度表示与透射率相关的光散射量。这些参数是根据 ASTM D1003“透明塑料雾度和透光率的标准方法”测量的。使用扫描电子显微镜 (SEM) 表征样品的形态,并获取高分辨率图像。通过这些图像,可以分析木材样品的微观结构,并评估脱木素和聚合物渗透的程度。光学特性测量结果表明,轻木的透光率最高(81-87%),其次是桦木(74-83%),然后是白蜡木(早材 66-78%,晚材 74-83%)。此外,轻木的雾度约为 65-70%,桦木约为 70-75%,白蜡木约为 74-80%。分析 SEM 图像后,得出结论:轻木的脱木素程度最高。这是通过观察纤维之间的细胞壁角来确定的,未经处理的木材中细胞壁角充满了木质素。观察到这些空间在脱木素的轻木中大多是空的,这表明这种木材的脱木素程度最高。由于所有样品中都有气穴,因此三种木材的聚合物渗透程度被认为是相同的。总的来说,这导致轻木是三种木材中最透明的,因此可以认为它最适合这种制造方法。
工程和电子系,阿布贝克尔贝尔卡德大学技术学院,阿尔及利亚特莱姆森 doi:10.15199/48.2024.10.23 基于 AlGaN/GaN/AlGaN 的 UV LED 单量子阱数值模拟 摘要。发光二极管 (LED) 等光源是制造更坚固、转换效率更高、更环保的灯具的良好解决方案。这项工作的目的是使用 SILVACO 软件研究和模拟夹在两层之间(分别为 p 掺杂和 n 掺杂的 AlGaN)的单个 GaN 量子阱的紫外发光二极管。通过这种模拟,我们可以提取 LED 的不同特性,例如电流-电压 (IV) 特性、发射光功率、自发辐射率、辐射复合、俄歇复合、肖克利-里德-霍尔复合、光增益、光通量、光谱功率密度、整体效率。这些模拟使我们能够提取基于 p-AlGaN/GaN/n-AlGaN 的单量子阱紫外发光二极管的电学和光学特性,并检查其性能。光学器件、发光二极管 (LED)、双色灯和发光二极管przyjaznych dla środowiska。 Celem tej pracy 开玩笑 zbadanie i symulacja diody elektroluminescencyjnej ultrafioletowej z pojedynczą Studnią kwantową GaN umieszczoną pomiędzy dwiema warstwami; odpowiednio p 掺杂 in n 掺杂 AlGaN, przy użyciu oprogramowania SILVACO。此 symulacja pozwoliła nam wyodrębnić różne charakterystyki diody LED、takie jak charakterystyka prądowo-napięciowa (IV)、moc emitowanego światła、szybkość emisji spontanicznej、rekombinacja radiacyjna、重新组合 Augera、重新组合 Shockleya-Reada-Halla、wzmocnienie optyczne、strumień świetlny、gęstość widmowa mocy、ogólna wydajność。该符号与 p-AlGaN/GaN/n-AlGaN 和 p-AlGaN/GaN/n-AlGaN 的其他器件有关。 ( Numeryczna symulacja pojedynczej Studni kwantowej diody UV LED na bazie AlGaN/GaN/AlGaN) 关键词:GaN、AlGaN、紫外发光二极管、silvaco Tcad。 Słowa kluczowe:GaN、AlGaN、二极管发射器、UV、silvaco Tcad。简介 基于氮化镓 (GaN) 的固态照明技术彻底改变了半导体行业。 GaN 技术在减少世界能源需求和减少碳足迹方面发挥了至关重要的作用。根据报告,2018 年全球照明需求减少了约 13% 的总能源消耗。美国能源部估计,到 2025 年,明亮的白色 LED 光源可以减少 29% 的照明能耗。近十年来,全球的研究人员致力于 III-N 材料研究,以改进现有技术并突破 III-V 领域的极限。现在,随着最近的发展,GaN 不仅限于照明,最新创新还推动了微型 LED、激光投影和点光源的发展。这些发展将 GaN 推向了显示技术领域。基于 GaN 的微型 LED 的小型化和硅上 GaN 的集成推动了其在快速响应光子集成电路 (IC) 中的应用。将详细讨论 GaN LED 领域的大多数最新进展 [1] III 族氮化物 (GaN、AlN 和 InN) 及其合金因其优异的物理性能和在恶劣环境条件下的稳定性而被认为是各种光电应用中最有前途的半导体材料 [2, 3, 4]。如今,基于 III 族氮化物的发光二极管 (LED) 因其效率高、功耗低、寿命比荧光灯和白炽灯长而被广泛应用于世界各地的固态照明 (SSL) 应用 [5, 6]。LED 是一种更有前途的低功耗光源,可取代传统的荧光灯。除 LED 外,基于 III 族氮化物的激光二极管 (LD)、高功率电子器件、光电探测器等也是其他扩展的光电应用,这些应用也已得到展示 [7, 8]。这项工作包括对基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果以及它们的电气和光学特性。还有其他扩展的光电应用也得到了展示 [7, 8]。这项工作包括基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果,并展示了它们的电气和光学特性。还有其他扩展的光电应用也得到了展示 [7, 8]。这项工作包括基于氮化镓 GaN 的单量子阱紫外 LED 的研究和模拟,在本文中,我们展示了所研究 LED 的模拟结果,并展示了它们的电气和光学特性。
亨宁化工 南通赫迈塔化工有限公司 安徽赫曼进出口有限公司 衡水和硕纤维素有限公司 上海赫克萨国际贸易有限公司 无锡海合诚新材料有限公司 鞍山海菲化学有限公司 新乡市海兰德颜料有限公司 青岛海立化工新材料有限公司 深圳市海润化工有限公司 湖北海盈新材料科技有限公司 青岛海格力化工有限公司 南京海宝国际有限公司 中山市浩莱特塑料颜料有限公司 郑州浩莱特材料有限公司 上海诚信化工有限公司 上海诚信精细化工科技有限公司 宁波宏大进出口有限公司有限公司 无锡市鸿辉新材料科技有限公司 东莞市鸿穗实业投资有限公司 广东鸿泰化工有限公司 安徽鸿泰新材料有限公司 杭州鸿雁颜料化工有限公司 浙江鸿宇新材料有限公司 云浮市鸿志新材料有限公司 杭州希望化工有限公司 湖北鸿源纳米科技产业有限公司 上海新搜助剂有限公司 山西华昌化工有限公司 山东华氟化工有限公司 广东华金达新材料科技有限公司 保定华联拓普科技有限公司 江苏华伦化工有限公司 广东华纳化学有限公司 上海皇朝实业有限公司 浙江皇马科技股份有限公司 浙江华特新材料有限公司 抚顺华兴石油化工有限公司 华谊和丰化工特种产品(淄博)有限公司 上海华谊新材料有限公司 上海华谊精细化工有限公司 浙江华源颜料有限公司 合肥华越新材料科技有限公司 广州汇和彩颜料有限公司 山东汇百川新材料有限公司 佛山市汇丰盛贸易有限公司 湖北汇富纳米材料有限公司 汇光纤维素醚事业部 鞍山市汇鸿新材料化工有限公司 山东汇金化工有限公司 上海汇彦新材料有限公司 广东汇友化工科技有限公司 广东汇云钛业有限公司 青岛华隆化工有限公司 广西海昌颜料有限公司 www.ibuychem.com/www.hzeyun.com/ www.coatings.hc360.com 广东英邦尼科技有限公司 英诺维塔科技(珠淮)有限公司 泛华化工有限公司 安徽爱索国际贸易有限公司 广州J&T化工贸易有限公司 浙江J Color科技有限公司 广州JFC材料科技有限公司 南召县嘉诚矿业有限公司 苏州工业园区嘉点化工有限公司 嘉化化工股份有限公司 黄山嘉嘉荧光材料有限公司 重庆建丰浩康化工有限公司 湖北江汉新材料有限公司 江门涂料厂有限公司 天津嘉腾化工制品有限公司 神州嘉鑫化工有限公司 山东佳源复合材料有限公司 杭州杰凯化工有限公司Dongguan Jifeng Plasticization Material Co., Ltd. Shanghai JINDUN Industrial Co., Ltd. Wenzhou Jinbaicai Pigment Technology Co., Ltd. Shanghai Jincong Industrial Co., Ltd. Shijiazhuang Jinghong Chemical Technology Co., Ltd. Shanghai Jingrex Chemical Industry Co., Ltd Shanghai Jingyan Chemical Co., Ltd Jingzhijie (Beijing) Technology Co., Ltd. Jiangsu Jinhai Hezhong Titanium Co., Ltd. Hunan Jinhao New Material Technology Co., Ltd. Jiangxi Jinhuan Pigments Co., Ltd. Guangxi Jinmao Titanium Co., Ltd. Nanjing Jinshan Chemical Technology Co., Ltd. Gansu Jinshi Chemical Co., Ltd. Henan Jinshuo Technology Co., Ltd. Fujian Jintai Pearl Pigment Co., Ltd. Gansu Jinte Chemical Co., Ltd. Jiangsu Jintu Additives Co., Ltd. Shanghai Jiuta Chemical Co., Ltd. Joinway Pharmaceutical Co., Ltd. Shanghai Joule New Material Tech. Co., Ltd. Yidu Jovian Industry Co., Ltd. Jtbon (Guangzhou) Building Materials Co., Ltd. Hunan Jufa Pigment Co., Ltd. Guangzhou Jujia New Material Technology Co., Ltd. Dongguan Juncheng Chemical Co., Ltd. Ningxia Junma Technology Co., Ltd. Junneng Chemicals (Longnan) Co., Ltd. Hunan Juren Chemical Hitechnology Co., Ltd. Qingdao JYTC New Material Technology Co., Ltd. Shanghai KaiKai Chemical Co., Ltd. Cangzhou Lingang Kaiyin New Material Technology Co., Ltd. Hangzhou Kanoen new material Co., Ltd. KARRAY New Material (Jiangsu) Co., Ltd. Shanghai Kastar Chemical Co., Ltd. Guangdong KDD Functional Material Co., Ltd. Keda, Nanxiong Kelly Technology Co., Ltd. Guangxi Hezhou Kelong Micro-powder Co., Ltd. Guangdong Kenxon Resin Co., Ltd. Shandong Ketian Chemical Co., Ltd. Guangdong Keytec New Material Technology Co., Ltd. King Brother Chem Co., Ltd. Kingmax Cellulose Co., Ltd. Zhuhai Kito Chemical Co., Ltd. Guangdong KOMO Co., Ltd. Kopper Chemical Industry Corp., Ltd. Jiangxi Kosin Frontier Technology Co., Ltd. Fujian Kuncai Material Technology Co., Ltd. Shandong Kundu Chemical Co., Ltd. Shandong Landu New Material Co., Ltd. Yongxing Langfeng Pigment Industry Co., Ltd. Shanghai Langyi Functional Materials Co., Ltd. Lapis Lazuli Pigments Co., Ltd. LB Group Co., Ltd. Guangzhou Leader Chemical Co., Ltd. LEADER FORMULA Shanghai LI SHENG Industrial Co., Ltd. Dalian Liansheng Trading (Changzhou) Co., Ltd. Dalian Liansheng Trading (Suzhou) Co., Ltd. Dalian Liansheng New Materials Group Co., Ltd. Yangzhou Lida Resin Co., Ltd. Guangzhou Lifly Chemicals Co., Ltd. Lily Group Co., Ltd. Henan Lingbao New Materials Technology Co., Ltd. Shanghai Lingrui Chemical Co., Ltd Guangzhou Lingwe Technology Co., Ltd. Jiujiang Linhui New Materials Co., Ltd. Guangdong Lisheng Polymer Technology Co., Ltd. Suzhou Lite Chemistry&Technology Co., Ltd. Shandong Lixing Advanced Material Co., Ltd. Taicang Liyuan Chemical Co., Ltd. Wuhu Loman Titanium Industrial Co., Ltd. Longchang Carbon Black Co., Ltd. Chengdu Longcheng High Tech Materials Co., Ltd. Jiangxi Longhai Chemical Co., Ltd. Wuhan Longhua Zhengze New Material Co., Ltd. Hubei Longsheng Sihai New Materials Co., Ltd.海宁龙盛颜料有限公司 梧州龙腾化工有限公司 宁波龙欣精细化工有限公司 上海龙阳化工有限公司 辽宁龙宇新材料有限公司 青岛龙运通股份有限公司 山东鲁北化工有限公司 石家庄绿源纤维素有限公司 南京联鑫化工有限公司 江苏林旺科技有限公司 山东美凯化工科技有限公司 南京美凯化工有限公司 MFCI有限公司 广东微控生物技术有限公司 微凝胶(南通)科技有限公司 沈阳迈达斯进出口有限公司昆山市米德斯塔染料化工有限公司 无锡市明辉国际贸易有限公司 安徽省明美化工有限公司 广州市明申新材料有限公司 湖南省明旭新材料有限公司 中山市明益化工新材料有限公司 浙江明辉发光科技有限公司 河南五矿东方实业有限公司 美瑞克化工有限公司 湖州美欣达新材料有限公司 厦门莫弗科技有限公司 浙江纳美材料科技有限公司 南京钛白化工有限公司 纳帕化工(上海)有限公司 北方化学工业有限公司 南京化工材料总公司 无锡市尼欧化工材料有限公司 长沙市新威进出口有限公司有限公司 湖南新威联新金属材料有限公司 江苏新光科技有限公司 宁夏凌世新材料科技有限公司 常州北美化工集团有限公司 天津诺瑞新材料科技有限公司 北京诺威精英科技有限公司 广东欧申新材料科技有限公司 北京奥德赛化工有限公司 广州奥鹏化工有限公司 欧瑞恩化工有限公司 江苏欧赛克新材料有限公司 深圳市欧凯科技有限公司 北京欧之信科技有限公司 攀钢集团钒钛资源有限公司 PCI & KM 连云港鹏辰特种新材料有限公司 重庆鹏凯精细化工有限公司 蓬莱市新光颜料化工有限公司 昆山宝格化工有限公司 杭州福博科技有限公司 先锋化工有限公司 宝利威尔(上海)新材料有限公司 深圳市普瑞凯新材料有限公司 普赛弗(清远)磷化工有限公司 江苏普瑞蒂新材料有限公司 杭州千金科技有限公司 杭州千阳科技有限公司 东莞市启明新材料科技有限公司 青岛中塑高新材料有限公司 浙江清和新材料科技有限公司 浙江庆宏新材料有限公司 启源纤维素有限公司 广州泉旭科技有限公司 开封夸克新材料有限公司 江苏蓝迪化工有限公司 广东瑞邦新材料有限公司 惠州市红墙化工有限公司 瑞德材料有限公司 龙口市人和群青化工有限公司 树脂化工有限公司 瑞旭化工有限公司 利安隆股份有限公司 瑞驰化工(湖北)有限公司 瑞科科技有限公司
建筑物的热隔离是当前能量和环境问题的核心。随着2024年生效的新法规,建筑行业正处于转折点。这些加强的标准旨在显着提高新建筑物和现有建筑物的能源效率,同时减少其碳足迹。对于建筑专业人士,建筑师和所有者,了解这些变化对于设计和翻新满足环境要求的建筑物至关重要。从2012年热调节(RT 2012)到2020年环境调节(RE 2020)的转变标志着建筑物热绝缘的方法是一个重要的里程碑。这种进化不仅增强了能源效率标准,而且还引入了新的环境标准。RE 2020优先考虑三个主要目标:减少建筑物的碳足迹,提高其能源性能并增强夏季舒适感。为了实现这些目标,热绝缘标准已得到显着加强。例如,与RT 2012相比,不透明壁的最小热阻力平均增加了20%。最重要的变化之一涉及整体建筑设计方法。虽然RT 2012主要关注能源消耗,但RE 2020考虑了建筑物的整个生命周期,从建筑到寿命末。这种整体方法意味着对绝缘材料的选择进行了更深入的反思,不仅考虑了它们的热性能,还考虑了它们的环境影响。u值越低,绝缘效果越好。2024年建造信封的技术要求比以前更为严格。这些新标准旨在在建筑物的内部和外部之间建立几乎不可渗透的热屏障,从而减少加热和空调需求。关键因素是热传输的系数(U值),该系数根据内部和外部之间的温度差异测量通过墙壁的热量。这是2024年各种墙壁最大允许的U值的概述: *外墙:0.15 w/m²k *屋顶:0.10 W/m²K *下层平板:0.20 w/m²K * Windows:1.2 w/m²K这些值这些值代表了先前的标准,代表了平均允许的30%的标准,均为先前的标准率高。为了实现这些性能,不可避免地使用高质量的绝缘材料和增加的绝缘厚度。热桥,热量更容易逃脱,在新法规下需要特别关注。The coefficient psi (Ψ), which measures linear heat loss at junctions between building elements, must now meet very strict values: * Junction wall/floor: Ψ ≤ 0.5 W/mK * Junction wall/roof: Ψ ≤ 0.3 W/mK * Junction between walls: Ψ ≤ 0.2 W/mK * Window perimeter: Ψ ≤ 0.4 W/mK Let me know if you'd like me to rephrase 任何事物!les nouvelles normes d'Aintrique thermique 2024 jexigent l'l'iperiques de construction de constructionavancéespor garantirl'Efficacitédesbâtiments。la Mesure del'étanchéité-l'Air est Cruciale,Avec des Seuils以及严格的MesurésPAR LE系数Q4PA-SURF。该过程涉及:1。2。3。专业人员必须从设计阶段整合此要求,并提供合适的密封解决方案。强烈鼓励使用基于生物的材料在热绝缘材料中,因为它们具有降低的环境影响,同时提供出色的绝缘性能。标准2024将这些材料纳入新结构的最低率。生物包封的材料必须符合特定的性能标准,例如小于或等于0.040 W/(M.K)的热导率(λ)。将这些材料的整合到绝缘材料中不仅满足技术要求,而且也是全球可持续建筑方法的一部分。为了满足2024个热绝缘标准的增加要求,建筑部门必须依靠创新的技术和解决方案。提前不仅可以满足监管标准,还可以优化建筑物的整体能源性能。从外部(ITE)的热绝缘材料正在经历明显的演变以适应标准2024。新的ITE系统结合了高性能复合材料和连接的传感器,从而可以对建筑物信封的热和潮流性能进行实际监视。最后,相变材料(PCM)代表了热绝缘领域的重大进步,因为它们具有存储和释放大量能量的能力。彻底的热学习用户批准的软件。在从固体到液体的相过渡期间,反之亦然,集成的PCM(相变材料)允许建筑物内的自然温度调节,从而减少加热和空调需求。PCM可以纳入各种形式,例如嵌入石膏面板中的微胶囊,带有聚合物矩阵的复合材料或用于热量储能的宏观化系统。这些解决方案增强了建筑物的热惯性,这显着有助于实现2024年标准设定的热舒适目标。门窗在全球建筑物绝缘层中起着至关重要的作用。2024标准对太阳因子(SW)和发光传输(TL)施加了更高的性能要求。具有低发射率的三层玻璃窗口已成为新结构的规范,其UW值低于0.8 W/(m².k)。该领域的创新涉及能够根据外部条件调整其光学和热性能的动态玻璃系统。这些电致变色或热色素技术全年优化太阳能增益和发光度,从而降低了建筑能源消耗。地板和屋顶绝缘材料也有了重大的技术进步。在地板上,闭孔泡沫隔离器可确保高温电阻率,同时保持完美的空气和湿度紧密,尤其适用于卫生坑或陶土板构造。对于屋顶,真空绝缘面板(VIP)正在越来越受欢迎,提供了厚度降低的出色绝缘材料,使其在空间有限的翻新项目中有利。4。5。热绝缘已经从简单地将隔离材料应用于复杂而智能的系统,以整合高级技术来优化整体建筑能源性能。计算方法和2024年认证的方法已经发生了重大发展,以适应新的热和环境绩效要求。这种整体方法可确保对建筑能源绩效的精确评估。动态热模拟软件(STD)在设计和评估符合2024标准的建筑物中起着至关重要的作用,对整个一年中建筑物的热行为进行了建模,考虑到方向,太阳能输入,热习惯,热习惯以及加热和频道系统。批准的2024认证软件必须集成THBCE的最新计算方法。要符合新的性能指标,设计师和建筑商必须考虑诸如Pleiades,DesignBuilder和TRNSYS之类的软件工具。这些程序不仅验证符合建筑标准,而且还优化建筑设计以提高能源效率。BBIO,CEP和TIC性能指标是2024方法论的关键。BBIO评估建筑物的生物气候质量,独立于能源系统,考虑了隔热,方向和太阳能收益等因素。在2024年,与RT 2012相比,BBIOMAX目标降低了30%,鼓励设计师优化建筑信封。CEP测量建筑物的主要能源消耗,用于加热,冷却,照明,热水生产和通风。TIC评估没有空调的夏季室内温度。2024标准为住宅建筑物设置了50 kWhep/(m².an)的Cepmax,这与以前的法规大幅度降低。为了实现这些雄心勃勃的目标,使用高性能能源系统并整合可再生能源是必不可少的。2024标准加强了此指标,要求室内温度每年不超过28°C超过28°C。这一要求推动了采用动态太阳阴影和夜间通风等被动解决方案。BBC-Feftinergie 2024标签代表了能量性能的卓越表现。要获得它,建筑物必须达到2020年的标准并超越。验证BBIO,CEP和TIC目标。 由认证组织进行的空气紧密度测试。 整个建筑物生命周期的碳足迹评估。 可再生能源的整合。 BBC-Feftinergie 2024标签需要的CEP至少比2020年标准(住宅建筑物40 kWhep/(m².an))低20%。 此外,它要求可再生能源满足建筑物需求的至少40%。 这些严格的标准推动了创新并采用了建筑部门的尖端技术。 2024年引入更严格的绝缘标准具有重大的经济和环境影响。 这种转变会影响建筑成本,财产价值和建筑物的生态足迹。 生命周期评估(LCA)成为评估隔离解决方案的全球环境影响的重要工具。验证BBIO,CEP和TIC目标。由认证组织进行的空气紧密度测试。整个建筑物生命周期的碳足迹评估。可再生能源的整合。BBC-Feftinergie 2024标签需要的CEP至少比2020年标准(住宅建筑物40 kWhep/(m².an))低20%。此外,它要求可再生能源满足建筑物需求的至少40%。这些严格的标准推动了创新并采用了建筑部门的尖端技术。2024年引入更严格的绝缘标准具有重大的经济和环境影响。这种转变会影响建筑成本,财产价值和建筑物的生态足迹。生命周期评估(LCA)成为评估隔离解决方案的全球环境影响的重要工具。这种方法考虑了材料生活的所有阶段,从提取到处置或回收。在2024年,必须为每个主要的建筑或翻新项目进行LCA。结果表明,某些基于生物的材料(例如木羊毛和大麻)通常比传统的绝缘选择更好。建筑物的新隔热标准远远超出了直接的热性能,并考虑了对环境的长期影响。例如,与传统的合成材料相比,使用木制羊毛面板可以将建筑物的碳足迹减少50年。目标不仅是减少能源消耗,而且是在整个建筑物的生命周期中最大程度地减少环境排放。为了实现这一目标,建筑师必须优化建筑物的各个方面,从物质选择到能源系统。新标准需要改变思维的转变,不仅要考虑即时成本和收益,还考虑了长期储蓄和环境影响。政府提出了经济激励措施,以鼓励采用这些标准,包括: *MapRimerénov':低收入家庭的90%覆盖范围 *以零利率为零:20年内20年内的eco-loan * 50,000欧元 *能源储蓄证书(CEE)(CEE):全面翻新的奖励这些奖励可显着降低这些薪资期。例如,耗资40,000欧元的100平方米房屋的全面翻新可能会在这些激励措施的帮助下从15年下降到7年,从而导致每年能源节省1,500欧元。减少碳排放是新标准的关键目标。E+C-(能量正和减少碳)计算方法已集成到法规中,为整个建筑物的生命周期设定了雄心勃勃的温室气体排放目标。到2024年,与2020年级相比,预计排放量将减少30%。要实现这些目标,建筑师必须专注于使用低碳材料,例如减少 - 连接器混凝土或本地采购的木材,并将可再生能源生产系统整合到建筑物中。建筑的未来正朝着更智能,更高效和对环境意识的建筑物发展,从而最大程度地降低了它们对地球的影响。(mbsurf_moy),可以放松生物气候需求阈值bbio_max,尤其是对于超过100平方米的房屋。地理状况:与位于热区(H2C或H3或H3且高度<400m)的房屋相关的调制(McGéo)的调制增加,从而使能源消耗天花板CEP_MAX,CEP,CEP,NR_MAX和CO2ICénergie_maxIcénergie_maxiCénergie_max通过使用空气条件的使用而增加。连接到热网络:对于连接到热网络的房屋,iCénergy_max平均天花板升至200 kg eqco2/m²,直到2027年。用于小规模的集体建筑物(shab≤1300m²)的适应与总建筑物表面积(MISURF_TOT)相关的调制,以减少构造排放天花板ICCONSTRUCTION_MAX,这考虑了每平方米参考表面的CO2排放。经验表明,由于电梯对小规模集体建筑的每平方米基础的重大影响,这种类型的建筑物确实受到指标ICConstruction的惩罚。用于组成小公寓(Smoyenne logement≤40m²)的集体建筑物基于平均公寓表面积(MISURF_MOY)的调制引入,以确定构造排放天花板ICCONSTRUCTION_MAX,考虑到小规模建筑(壁尺寸设备)的每平方尺度建筑物的每平方米基础上的较高密度,可用于墙壁,墙壁的设备,等等。对于配备太阳能电池板的建筑物:所有建筑物都受到RE2020的影响,无论大小如何:基于太阳能电池板安装(MIPV)的影响,当安装的碳足迹超过20kGGO2/m²时,基于太阳能电池板安装(MIPV)对施工排放天花板ICCONSTRUCTION_MAX的影响。由于这些设备的碳足迹,在存在太阳能电池板覆盖的重要表面积的情况下,可以放松建筑排放天花板。对于连接到分类热网络的建筑物:与能源消耗相关的二氧化碳排放的平均iCénergie_max天花板从2022 - 2024年延长至2025-2027。由于大多数热量网络仍然没有足够的可再生能源速度,因此公共当局希望为网络经理提供三年的时间,以进行必要的工作以脱碳,使其网络化。
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且