简介:被认为是月球南极的永久遮蔽区域(PSR),可以容纳多种资源,这些资源对于支持和推进人类对月球和其他行星体的探索至关重要。遥感数据(例如,Diviner [1])表明,PSR中的低表面温度为水冰和其他挥发物的冷捕获提供了一个有利的热环境,某些区域的温度低至20K。准确的估计了Lunar Regolith在低于100 K的pot pot pot pot pot pot pot pot pot pot pot thermant 〜100 k的距离〜100 k的距离。然而,关于月球雷果石的热物理特性的许多已发表研究都集中在150 K以上的温度上(例如2)。我们提出了实验性的努力,以测量在15-300 K的温度范围内测量直径为400-500 µm的直径玻璃珠和NU-LHT-2M月球模拟物,以及15-150 K的Apollo 11 Regolith。端盖设计以减少热量损失,并进行扩展的加热探针针,以改善测量值。初步结果表明,温度的导热率降低,低于月球雷果石的标准导热率模型预测(例如4)。干岩的低温热导率测量值可能是估计特定区域中冰或挥发性含量的基线。水冰的变化和挥发性丰度有望影响原位观察到的热导率值,或从遥感测量值中推断出来。
简介:地球上的生物多样性受到威胁,并处于危险之中。即使在全球气候变化的最乐观模型下,地球生物的惊人比例也将继续灭绝。由于无数的人为驱动因素,大部分物种和生态系统面临的不稳定和灭绝威胁,这些威胁的加速速度比我们帮助他们在自然环境中拯救它们的能力更快。迫切需要设想创新的策略来保护地球的生物多样性,以保护未来的生态系统。冷冻保存技术提供了一种创新的策略,从而可以在100年内冷冻和呈静脉。随着成功的越来越多,可以融化冷冻保存材料的收集以恢复DNA,完整的细胞甚至整个功能生物。全球许多机构都维持冷冻保存的生物收藏,尤其是那些处理人类健康的机构;但是,很少有生物症状在冷冻状态下将活的野生动植物样品持有。尽管如此,所有这些生物局限器都需要密集的人类管理,电力和持续的液氮供应,从而使它们容易受到不可预测的自然和地缘政治灾难的影响。此外,许多冷冻收藏都存储在城市中心,使它们更容易受到破坏稳定威胁的影响。
简介:NASA的DECED目标之一是迈向开放科学,但是研究人员没有途径沉积和探索非生物/益生元有机提取物和反应的光谱。实验室实验模拟行星过程和mete-orite研究为生命检测工作提供了揭示可能发生的有机化学作用[1]。更重要的是,此类研究可用于阐明有利于生命起源(OOL)化学的条件,从而告知行星机构的可行性,以托管OOL事件[2]。许多非生物有机物在地球生活中没有,在代谢组学数据库或商业标准中不可用,从而阻碍了社区表征这些化合物的能力。因此,许多益生元有机物是未研究的,未报告和未知的(例如,图。1)。
真空:月球外层由惰性气体和其他原子和分子组成,这些气体和分子从月球内部释放,源自太阳风,或由陨石和彗星尘埃形成 [4, 5]。必须考虑飞行硬件的构造所用的材料及其各自的排气特性。月球表面系统的硬件选择应遵循 NASA 热真空稳定性指南。该模块提供了此信息的资源和数据库,例如材料和工艺技术信息系统 (MAPTIS),它提供了测试材料的排气特性和热真空稳定性等级 [6]。
背景:自 2013 年以来,NASA JSC ARES 一直与 T STAR 和德克萨斯 A&M 大学 (TAMU) 合作,创建与政府、学术界和私营企业共同开发的原型仪器项目。NASA 为 T STAR 提供需求和资金,然后 T STAR 与 TAMU 教员合作,指导高年级本科生 Capstone 团队设计、测试和交付工作原型。这个 LIT 原型遵循了一系列之前的 T STAR 项目,这些项目评估并交付了月球表面 EVA 部署工具的概念,包括 SMART Stick、甘道夫权杖 [1] 和巫师权杖 [2]。用于表面科学仪器和样本收集的探测车原型已通过移动分析月球平台 (MALP) [3] 和 HELIX 重力测量概念 [4] 进行了演示。 24 财年 LIT 的资金由 NASA JSC 月球指挥与控制互操作性 (LUCCI) 项目提供,该项目专注于识别和标准化多个月球表面元素之间的接口,每个接口由具有独特硬件、软件、网络、电源和通信要求的供应商开发。
月球电池是一个完全集成的太阳能电池系统。它包含一个混合逆变器,可有效地将太阳能和电池能量转换为电源房屋,并直接将多余的太阳能存储在电池中,以最大程度地利用太阳能使用。月球电池有模块化,紧凑的块,为各种尺寸的房屋带来24/7可靠的清洁能源。由智能软件提供动力,Lunar的持久电池与您的太阳系共同起作用,以最大程度地提高自我消费,节省公用事业账单并提供真正的全家备用体验。
•随机月球地形产生,具有大的(陨石坑,山丘)和小(迷你陨石坑,岩石)伪影。•其他地形样品是手工制作或缩放的NASA高分辨率地形。•许多可自定义的参数设置火山口,地形大小和特征。•培训数据收集的大面积,可为更广泛的唯一数据范围提供。
工程团队 Leandro James (SE 主管) Earl Daley (机械) Matt McKay Mike Padgen (流体学) Victor Yeh Brandon Schmitt (软件) Bryan Kirsch Mareyna Karlin Nicholas Stoffle (ARES) Brett Stroozas (OPS 主管) Steven Ormsby Stephanie Mauro (热能) HK Vogelsong (I&T 主管) Shang Wu (电气) Nghia Mai Neil Davies Aidan Remy
摘要 — CADRE(合作式自主分布式机器人探索)是一项月球技术演示任务,由三辆探测车和一个基站组成的团队进行多智能体自主探索。该任务计划于 2024 年作为 IM-3 任务的 CLPS(商业月球有效载荷服务)载荷降落在月球的雷纳伽马地区。CADRE 的目标是演示一组自主探测车如何仅接收来自地球的高级任务,自主探索月球表面的某个区域,并与多静态探地雷达协调进行分布式测量。我们设想,多智能体自主将使未来的任务能够解决月球、火星及其他地方的行星科学中迄今未解答的问题。在本文中,我们描述了为 CADRE 开发的自主架构,包括多智能体协调和单智能体驾驶表面移动性,并讨论了导致选择这种架构的要求和限制。